Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Neurotransmitters histamine regulation

Certain amino acids and their derivatives, although not found in proteins, nonetheless are biochemically important. A few of the more notable examples are shown in Figure 4.5. y-Aminobutyric acid, or GABA, is produced by the decarboxylation of glutamic acid and is a potent neurotransmitter. Histamine, which is synthesized by decarboxylation of histidine, and serotonin, which is derived from tryptophan, similarly function as neurotransmitters and regulators. /3-Alanine is found in nature in the peptides carnosine and anserine and is a component of pantothenic acid (a vitamin), which is a part of coenzyme A. Epinephrine (also known as adrenaline), derived from tyrosine, is an important hormone. Penicillamine is a constituent of the penicillin antibiotics. Ornithine, betaine, homocysteine, and homoserine are important metabolic intermediates. Citrulline is the immediate precursor of arginine. [Pg.87]

Non-mast cell histamine is found in several tissues, including the brain, where it functions as a neurotransmitter. Strong evidence implicates endogenous neurotransmitter histamine in many brain functions such as neuroendocrine control, cardiovascular regulation, thermal and body weight regulation, and sleep and arousal (see Chapters 21 and 37). [Pg.348]

The most popular OTC sleep aids are those that contain antihistamines such as diphenhydramine or doxylamine (Table 3.1). As noted in Chapter 1, nerve cells in the brain communicate with each other by secreting chemicals called neurotransmitters. One such neurotransmitter that regulates sleep is histamine. When histamine is released by a nerve cell, it diffuses over to the target nerve cell and binds to specialized proteins called receptors located on the outer surface of the nerve cell. These receptors are specially designed to bind only histamine, and when they do, the target nerve cell will become either activated or deactivated. In the brain, histamine serves the function of keeping us awake, and when drugs such as antihistamines are taken, they block the ability of histamine receptors to bind histamine. [Pg.45]

The neurotransmitter histamine (HA) exerts several functions in the hypothalamus [1-2] including an involvement in the neuroendocrine regulation of pituitary hormone secretion [3]. HA has no effect directly at the level of the pituitary gland, but influences the secretion of anterior pituitary hormones either by an exerted e.g. in the paraventricular nucleus (PVN) on other central transmitters or hypothalamic regulating factors, which subsequently regulate the release of anterior pituitary hormones. In addition, HA acts on the supraoptic nucleus (SON) in the hypothalamus where the posterior pituitary hormones are synthesized and thereby exerts a direct effect on the release of the posterior pituitary hormones. Immunohistochemical studies have revealed that the histaminergic neurons, which originate in the tuberomammillary nuclei of the posterior hypothalamus, densely innervate most of the hypothalamic areas involved in the neuroendocrine control of pituitary hormone secretion [4-5]. Within the last two decades the effect of HA on pituitary hormone secretion have been explored in several studies and it has been... [Pg.41]

Histamine is a biogenic amine that is widely distributed in the body and functions as a major mediator of inflammation and allergic reactions, as a physiological regulator of gastric acid secretion in the stomach, as a neurotransmitter in the central nervous system (CNS) and may also have a role in tissue growth and repair. [Pg.588]

Histaminergic neurons can regulate and be regulated by other neurotransmitter systems. A number of other transmitter systems can interact with histaminergic neurons (Table 14-1). As mentioned, the H3 receptor is thought to function as an inhibitory heteroreceptor. Thus, activation of brain H3 receptors decreases the release of acetylcholine, dopamine, norepinephrine, serotonin and certain peptides. However, histamine may also increase the activity of some of these systems through H, and/or H2 receptors. Activation of NMDA, p opioid, dopamine D2 and some serotonin receptors can increase the release of neuronal histamine, whereas other transmitter receptors seem to decrease release. Different patterns of interactions may also be found in discrete brain regions. [Pg.261]

Histamine occurs in the brain, particularly in certain hypothalamic neurons, and evidence is strong that histamine is a neurotransmitter. Distribution of histamine, its synthetic enzyme (histidine decarboxylase), and methyl histamine (the major brain metabolite) is not uniform. Possible roles for histamine in the regulation of food and water intake, thermoregulation, hormone release, and sleep have been suggested. Additional information on histamine can be found in Chapter 38. [Pg.285]

Postsynaptic Hj- and Hj-receptors are responsible for a variety of processes in the CNS. Hi-receptors mediate the maintenance of wakeful states, while Hj- and Hj-receptors participate in the regulation of blood pressure, body temperature, fluid homeostasis, and pain sensation. Presynaptic Hj-receptors serve as feedback inhibitors of the release of histamine, norepinephrine, and other neurotransmitters. [Pg.452]

The exact neurotransmitter role of histamine in the CNS remains an enigma. However, regulation of arousal and appetite by histamine has long been suggested by... [Pg.529]

Histamine is not only a mediator of several (patho)physiological actions, but also functions as a neurotransmitter, both centrally as peripherally [1, 2]. Feedback mechanisms are crucial to neurotransmission and the presynaptic histamine H3 receptor not only plays a key role in regulating histamine release but also regulates the release of other neurotransmitters (for further details see chapter 2 and 3). Because inhibitory effects on histamine H3 receptor-mediated stimuli by G protein toxins (both cholera and pertussin toxin) have been reported, it is most likely that the histamine H3 receptor also belongs to the superfamily of G protein-coupled receptors [3,4], i.e. coupled to a G protein of the Gi/0 class [5]. The reader is referred to chapter 6 for more details. [Pg.223]

Histamine H3-receptors have been reported to regulate not only the release and turnover of histamine via autoreceptors on histaminerglc nerve endings [1-3], but also the releases of noradrenaline, dopamine, serotonin, and acetylcholine via heteroreceptors on non-histaminerglc axon terminals [22-26], Thioperamide increased the release of these neurotransmitters, while... [Pg.259]

Apart from its role as a major mediator of inflammation and allergic reactions and as physiological regulator of gastric acid secretion, histamine is also a neurotransmitter in the CNS. Central histaminergic cell bodies are located in the posterior hypothalamus and project diffusely to almost all brain regions and to the spinal cord. There are four types of histamine receptors, all G-protein-coupled, Hi, H2, H3 and H4. Hi receptors couple to Gq/11 proteins. H2 receptors couple to Gs. H3 and H4 receptors couple to Gi/o. [Pg.291]

A number of the products of the decarboxylation of amino acids shown in Table 9.2 are important as neurotransmitters and hormones, such as dopamine, noradrenaline, adrenaline, serotonin (5-hydroxytryptamine), histamine, and Y - aminobutyric acid (GABA), and as the diamines agmatine andput-rescine and the polyamines spermidine and spermine, which are involved in the regulation of DNA metabolism. The decarboxylation of phosphatidylser-ine to phosphatidylethanolamine is important in phospholipid metabolism (Section 14.2.1). [Pg.239]

In various brain areas neuronal histamine release and synthesis is regulated presynaptically by histamine H3 receptors [1]. Recent studies revestl that H3 receptors not only act as autoreceptors to regulate the release euid synthesis of histamine [2, 3], but also modulate the release of other neurotransmitters, like acetylcholine [4], serotonin [5], dopamine [6] and noradrenaline [7]. In view of these widespread modulatory activities of the histamine H3 receptors, important roles for this receptor subtype in the various mammalian brain functions have been indicated [8, 9]. Consequently, selective ligands for the H3 receptor have been suggested to be benificial in the treatment of e.g. epilepsia, Alzheimer disease, sleeping and attention-deficit disorders [10, 11,12, 13, 14, 15,16],... [Pg.193]


See other pages where Neurotransmitters histamine regulation is mentioned: [Pg.239]    [Pg.123]    [Pg.128]    [Pg.136]    [Pg.590]    [Pg.37]    [Pg.86]    [Pg.370]    [Pg.261]    [Pg.270]    [Pg.176]    [Pg.34]    [Pg.291]    [Pg.29]    [Pg.517]    [Pg.773]    [Pg.29]    [Pg.36]    [Pg.59]    [Pg.94]    [Pg.115]    [Pg.525]    [Pg.126]    [Pg.236]    [Pg.332]    [Pg.80]    [Pg.472]    [Pg.590]    [Pg.312]    [Pg.124]    [Pg.587]    [Pg.502]    [Pg.132]   
See also in sourсe #XX -- [ Pg.260 ]




SEARCH



Histamine neurotransmitter

© 2024 chempedia.info