Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nebulizer Methods

The nebulization concept has been known for many years and is commonly used in hair and paint spays and similar devices. Greater control is needed to introduce a sample to an ICP instrument. For example, if the highest sensitivities of detection are to be maintained, most of the sample solution should enter the flame and not be lost beforehand. The range of droplet sizes should be as small as possible, preferably on the order of a few micrometers in diameter. Large droplets contain a lot of solvent that, if evaporated inside the plasma itself, leads to instability in the flame, with concomitant variations in instrument sensitivity. Sometimes the flame can even be snuffed out by the amount of solvent present because of interference with the basic mechanism of flame propagation. For these reasons, nebulizers for use in ICP mass spectrometry usually combine a means of desolvating the initial spray of droplets so that they shrink to a smaller, more uniform size or sometimes even into small particles of solid matter (particulates). [Pg.106]

Nebulizers can be divided into several main types. The pneumatic forms work on the principle of breaking up a stream of liquid into droplets by mechanical means the liquid stream is forced through a fine nozzle and breaks up into droplets. There may be a concentric stream of gas to aid the formation of small droplets. The liquid stream can be directed from a fine nozzle at a solid target so that, on impact, the narrow diameter stream of liquid is broken into many tiny droplets. There are variants on this approach, described in the chapter devoted to nebulizers (Chapter 19). [Pg.106]

Sample Inlets for Plasma Torches, Part B Liquid Inlets [Pg.107]

Nebulizers can be divided into several main types. The pneumatic forms work on the principle of breaking up a stream of liquid into droplets by mechanical means the liquid stream is forced through a fine nozzle and breaks up into droplets. There may be a concentric stream of gas to aid [Pg.106]


The double-spike technique of Rosman (1972) has been revived by Tanimizu et al. (2002), who used a Zn- Zn spike and obtained precisions in the range of a fraction of a per mil. Jackson and Gunther (2003) describe a laser-ablation technique of isotopic measurement, which provides a precision comparable to the standard solution nebulization methods. [Pg.414]

Solutions or suspensions are available as nebulizer formulations. Due to the relative simplicity in formulating a liquid nebulizer formulation and because of the relatively large range of doses available for delivery, the nebulization method is often chosen as the aerosol method for proof-of-concept investigational studies. [Pg.707]

Using ETV-ICP-MS detection limits improved by a factor of 10 to 10 compared with pneumatic nebulization methods. Detection limits using pneumatic nebulizers with ICP-MS are typically 1 to lOOngP, and those for ETV-ICP-MS 1 to lOpgP (Table 34). This is due to more efficient nebulization (the nebulization efficiency of pneumatic nebulizers is only 1 to 2%) and removal of the solvent matrix by thermal pretreatment. Thus, using this technique it is possible to analyse samples containing high levels of dissolved salts. Also the ability to operate with very small sample volumes (10 to 100 fil) is useful, especially when the amount of sample is limited. [Pg.202]

Detection methods applied in ion chromatography are divided into electrochemical, spectrometric, nebulization, and others. Conductometric, amperometric, and charge detection are electrochemical methods, while the spectrometric methods include UV/Vis, fluorescence, and refractive index detection. In addition, there are various application forms of these detection methods. Nebulization methods include evaporative light scattering (ELS) and charged aerosol detection (CAD). All of these methods are described in detail in this chapter. [Pg.731]

Limitations of this technique include the extended length of time required for analysis, the lack of automation capability, and its relatively poor repeatability compared with other techniques, all of which limit its usefulness for routine analysis. Because of sample pipetting uncertainties and variation in the sample vaporization step, the relative precision (10—15% RSD) of this technique is not as good as that achieved by solution nebulization methods. Table 5.3 shows a summary of precision and the percent recovery of various analyte elements for a 1 p.g/L standard solution. [Pg.79]

Data for the several flame methods assume an acetylene-nitrous oxide flame residing on a 5- or 10-cm slot burner. The sample is nebulized into a spray chamber placed immediately ahead of the burner. Detection limits are quite dependent on instrument and operating variables, particularly the detector, the fuel and oxidant gases, the slit width, and the method used for background correction and data smoothing. [Pg.727]

Suitable inlets commonly used for liquids or solutions can be separated into three major classes, two of which are discussed in Parts A and C (Chapters 15 and 17). The most common method of introducing the solutions uses the nebulizer/desolvation inlet discussed here. For greater detail on types and operation of nebulizers, refer to Chapter 19. Note that, for all samples that have been previously dissolved in a liquid (dissolution of sample in acid, alkali, or solvent), it is important that high-purity liquids be used if cross-contamination of sample is to be avoided. Once the liquid has been vaporized prior to introduction of residual sample into the plasma flame, any nonvolatile impurities in the liquid will have been mixed with the sample itself, and these impurities will appear in the results of analysis. The problem can be partially circumvented by use of blanks, viz., the separate examination of levels of residues left by solvents in the absence of any sample. [Pg.104]

Solutions can be examined by ICP/MS by (a) removing the solvent (direct and electrothermal methods) and then vaporizing residual sample solute or (b) nebulizing the sample solution into a spray of droplets that is swept into the plasma flame after passing through a desolvation chamber, where excess solvent is removed. The direct and electrothermal methods are not as convenient as the nebulization inlets for multiple samples, but the former are generally much more efficient in transferring samples into the flame for analysis. [Pg.108]

In some cases, it may be convenient to dissolve a solid and present it for analysis as a solution that can be nebulized and sprayed as an aerosol (mixed droplets and vapor) into the plasma flame. This aspect of analysis is partly covered in Part B (Chapter 16), which describes the introduction of solutions. There are vaporization techniques for solutions of solids other than nebulization, but since these require prior evaporation of the solvent, they are covered here. There are also many solid samples that need to be analyzed directly, and this chapter describes commonly used methods to do so. [Pg.110]

Aerosols can be produced as a spray of droplets by various means. A good example of a nebulizer is the common household hair spray, which produces fine droplets of a solution of hair lacquer by using a gas to blow the lacquer solution through a fine nozzle so that it emerges as a spray of small droplets. In use, the droplets strike the hair and settle, and the solvent evaporates to leave behind the nonvolatile lacquer. For mass spectrometry, a spray of a solution of analyte can be produced similarly or by a wide variety of other methods, many of which are discussed here. Chapters 8 ( Electrospray Ionization ) and 11 ( Thermospray and Plasmaspray Interfaces ) also contain details of droplet evaporation and formation of ions that are relevant to the discussion in this chapter. Aerosols are also produced by laser ablation for more information on this topic, see Chapters 17 and 18. [Pg.138]

For solids, there is now a very wide range of inlet and ionization opportunities, so most types of solids can be examined, either neat or in solution. However, the inlet/ionization methods are often not simply interchangeable, even if they use the same mass analyzer. Thus a direct-insertion probe will normally be used with El or Cl (and desorption chemical ionization, DCl) methods of ionization. An LC is used with ES or APCI for solutions, and nebulizers can be used with plasma torches for other solutions. MALDI or laser ablation are used for direct analysis of solids. [Pg.280]

Kennedy describes a method using an ultrasonic nebulizer to generate a fog of water droplets w hich is used in the same way as smoke to visualize airflows. Several types of nebulizers are available but they require an electrical connection and are not hand-held. Food dye can be added to the water to produce colored fog. The nebulizers are expensive (about 1500 ECU) but have negligible operating costs. Although the amount of smoke produced is small, it is nontoxic and nonirritating. [Pg.1021]

Other methods have been developed for the removal of oxygen (particularly from flowing streams). These include the use of electrochemical or chemical (zinc) scrubbers, nitrogen-activated nebulizers, and chemical reduction (by addition of sodium sulfite or ascorbic acid). Alternately, it may be useful to employ voltam-... [Pg.103]

The major advance in the way in which column eluate is deposited on the belt was the introduction of spray deposition devices to replace the original method which was simply to drop liquid onto the belt via a capillary tube connected directly to the outlet of the HPLC column. These devices, based on the gas-assisted nebulizer [5], have high deposition efficiencies, transfer of sample can approach 100% with mobile phases containing up to 90% water, and give constant sample deposition with little band broadening. [Pg.138]

Atmospheric-pressure chemical ionization (APCI) is another of the techniques in which the stream of liquid emerging from an HPLC column is dispersed into small droplets, in this case by the combination of heat and a nebulizing gas, as shown in Figure 4.21. As such, APCI shares many common features with ESI and thermospray which have been discussed previously. The differences between the techniques are the methods used for droplet generation and the mechanism of subsequent ion formation. These differences affect the analytical capabilities, in particular the range of polarity of analyte which may be ionized and the liquid flow rates that may be accommodated. [Pg.180]

Huang M, Hirabayashi A, Shirasaki T, Koiznmi H (2000) A multimicrospray nebulizer for microwave-induced plasma mass spectrometry. Anal Chem 72 2463-2467 Ivanovich M, Murray A (1992) Spectroscopic methods. In Uranium-Series Disequilibrium Applications to Earth, Marine, and Enviromnental Sciences, 2" Ed. Ivanovich M, Harmon RS (eds) Orfbrd Univ. Press, Oxford... [Pg.57]

ICP-MS (inductively coupled plasma mass spectrometry) is frequently used for determining ultratrace amounts of technetium [9]. In spite of the high cost of the equipment, this detection method is far superior to other radiometric methods as regards sensitivity. When a double focussing high-resolution system is used (HR-ICP-MS) and an ultrasonic nebulizer is introduced [10], the detection limit is in the order 0.002 mBq. The ICP-MS method has been successfully applied to the determination of environmental "Tc as well as to other long-lived radionuclides of neptunium and plutonium in the environment. [Pg.25]

For the majority of applications, the sample is taken into solution and introduced into the plasma as an aerosol in the argon stream. The sample solution is pumped by a peristaltic pump at a fixed rate and converted into an aerosol by a nebulizer (see atomic absorption spectrometry). Various designs of nebulizer are in use, each having strengths and weaknesses. The reader is directed to the more specialist texts for a detailed consideration of nebulizers. There is an obvious attraction in being able to handle a solid directly, and sample volatilization methods using electric spark ablation, laser ablation and electrothermal volatilization have also been developed. [Pg.302]

There are several sample introduction methods that are used in conjunction with ICP, including nebulization, electrothermal evaporation, gas chromatography, hydride generation, and laser ablation [30]. Laser ablation combined with ICP (LA-ICP) is useful for analysis of solids. In such a source the sample is positioned in a chamber prior to the ICP source, the ablation cell. Argon gas at atmosperic pressure flows through the cell towards the ICP source. The sample is irradiated by a laser beam and... [Pg.22]

In critical evaluation of the effect of a gas, vapor, or aerosol inhaled in to the respiratory tract of an animal, the dosimetric method has been recommended (Oberst, 1961). However, due to the complexity of measuring the various parameters simultaneously, only a few studies on gaseous drugs or chemicals have employed the dosimetric method (Weston and Karel, 1946 Adams et al., 1952 Leong and MacFarland, 1965 Landy et al., 1983 Stott and McKenna, 1984 Dallas et al., 1986, 1989). For studies on liquid or powdery aerosols, modified techniques such as intratracheal instillation (Brain et al., 1976) or endotracheal nebulization (Leong et al., 1988) were used to deliver an exact dose of the test material into the lower respiratory tract (LRT) while bypassing the URT and ignoring the ventilatory parameters. [Pg.346]


See other pages where Nebulizer Methods is mentioned: [Pg.106]    [Pg.106]    [Pg.196]    [Pg.286]    [Pg.116]    [Pg.106]    [Pg.106]    [Pg.196]    [Pg.286]    [Pg.116]    [Pg.56]    [Pg.106]    [Pg.114]    [Pg.142]    [Pg.317]    [Pg.356]    [Pg.196]    [Pg.388]    [Pg.504]    [Pg.756]    [Pg.169]    [Pg.101]    [Pg.328]    [Pg.330]    [Pg.524]    [Pg.133]    [Pg.235]    [Pg.571]    [Pg.353]    [Pg.39]   


SEARCH



Nebulization

Nebulizations

Nebulizer

© 2024 chempedia.info