Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Naphthalene processes

Use vapor recovery systems to prevent air emissions from light oil processing, tar processing, naphthalene processing, and phenol and ammonia recovery processes. [Pg.75]

Naphthalene processing, final coolers, and final cooler cooling towers No ( zero ) emission 40 CFR 61.134 EPA 1989a... [Pg.335]

Metal-ion treatment (e.g., sodium naphthalene process for fluorocarbons)... [Pg.441]

The fluorocarbon surface may be made more wettable by exposing it for a brief moment to a hot flame to oxidize the snrface. The most satisfactory surface treatment is achieved by immersing the plastic in a sodium-naphthalene dispersion in tetrahydrofuran. This process is believed to remove fluorine atoms, leaving a carbonized surface that can be wet easily. Fluorocarbon films treated for adhesive bonding are available from most suppliers. A formulation and description of the sodium-naphthalene process may be found in Table 7.10 (p. 7.37). Commercial chemical prodncts for etching fluorocarbons are also listed. [Pg.466]

The combination of properties that makes fluorocarbons highly desirable engineering plastics also makes them nearly impossible to heat or solvent weld and very difficult to bond with adhesives without proper surface treatment. The most common surface preparation for fluorocarbons is a sodium naphthalene etch, which is believed to remove fluorine atoms from the surface to provide better wetting properties. A formulation and description of the sodium naphthalene process can be found in another chapter. Commercial chemical products for etching fluorocarbons are also listed. [Pg.553]

Figure 9.7 Phthalic anhydride is produced from o-xylene (Process 1) or naphthalene (Process 2)... Figure 9.7 Phthalic anhydride is produced from o-xylene (Process 1) or naphthalene (Process 2)...
Figure Bl.16.14. Top, the canonical axes for triplet naphthalene. The z-axis is directed out of the plane of the paper. Bottom, energy levels and relative populations during the CIDEP triplet mechanism process. See text... Figure Bl.16.14. Top, the canonical axes for triplet naphthalene. The z-axis is directed out of the plane of the paper. Bottom, energy levels and relative populations during the CIDEP triplet mechanism process. See text...
The purpose of this eornpuLer project is Lo examine several polynuclear aromatic hydrocarbons and to relate their electron density patterns to their carcinogenic activity. If nucleophilic binding to DN.A is a significant step in blocking the normal transcription process of DN.A, electron density in the hydrocarbon should be positively correlated to its carcinogenic potency. To begin with, we shall rely on clinical evidence that benzene, naphthalene, and phenanthrene... [Pg.291]

For substances with a moderate triple point pressure e.g., benzoic acid, 6 mm., m.p. 122° naphthalene, 7 mm., m.p. 80° ), the simple process described above for camphor will not give a satisfactory yield of a sublimed product. Thus, for example, if naphthalene is heated it will melt at T (80°), and will boil when the vapour pressure is 760 mm. (218°) ... [Pg.38]

The theory of sublimation, t.e. the direct conversion from the vapour to the sohd state without the intermediate formation of the liquid state, has been discussed in Section 1,19. The number of compounds which can be purified by sublimation under normal pressure is comparatively small (these include naphthalene, anthracene, benzoic acid, hexachloroethane, camphor, and the quinones). The process does, in general, yield products of high purity, but considerable loss of product may occur. [Pg.154]

Under the same conditions the even more reactive compounds 1,6-dimethylnaphthalene, phenol, and wt-cresol were nitrated very rapidly by an autocatalytic process [nitrous acid being generated in the way already discussed ( 4.3.3)]. However, by adding urea to the solutions the autocatalytic reaction could be suppressed, and 1,6-dimethyl-naphthalene and phenol were found to be nitrated about 700 times faster than benzene. Again, the barrier of the encounter rate of reaction with nitronium ions was broken, and the occurrence of nitration by the special mechanism, via nitrosation, demonstrated. [Pg.60]

Approximately 50—55% of the product from a coal-tar refinery is pitch and another 30% is creosote. The remaining 15—20% is the chemical oil, about half of which is naphthalene. Creosote is used as a feedstock for production of carbon black and as a wood preservative. Because of modifications to modem coking processes, tar acids such as phenol and cresyUc acids are contained in coal tar in lower quantity than in the past. To achieve economies of scale, these tar acids are removed from cmde coal tar with a caustic wash and sent to a central processing plant where materials from a number of refiners are combined for recovery. [Pg.162]

The unit Kureha operated at Nakoso to process 120,000 metric tons per year of naphtha produces a mix of acetylene and ethylene at a 1 1 ratio. Kureha s development work was directed toward producing ethylene from cmde oil. Their work showed that at extreme operating conditions, 2000°C and short residence time, appreciable acetylene production was possible. In the process, cmde oil or naphtha is sprayed with superheated steam into the specially designed reactor. The steam is superheated to 2000°C in refractory lined, pebble bed regenerative-type heaters. A pair of the heaters are used with countercurrent flows of combustion gas and steam to alternately heat the refractory and produce the superheated steam. In addition to the acetylene and ethylene products, the process produces a variety of by-products including pitch, tars, and oils rich in naphthalene. One of the important attributes of this type of reactor is its abiUty to produce variable quantities of ethylene as a coproduct by dropping the reaction temperature (20—22). [Pg.390]

The BASF process uses /V-methy1pyrro1idinone as the solvent to purify acetylene in the cracked gas effluent. Alow pressure prescmbbing is used to remove naphthalenes and higher acetylenes. The cracked gas is then compressed to 1 MPa (10 atm) and fed to the main absorption tower for acetylene removal. Light gases are removed from the top of this tower. [Pg.390]

Tetrahydronaphthalene is produced by the catalytic treatment of naphthalene with hydrogen. Various processes have been used, eg, vapor-phase reactions at 101.3 kPa (1 atm) as well as higher pressure Hquid-phase hydrogenation where the conditions are dependent upon the particular catalyst used. Nickel or modified nickel catalysts generally are used commercially however, they are sensitive to sulfur, and only naphthalene that has very low sulfur levels can be used. Thus many naphthalene producers purify their product to remove the thionaphthene, which is the principal sulfur compound present. Sodium treatment and catalytic hydrodesulfuri2ation processes have been used for the removal of sulfur from naphthalene the latter treatment is preferred because of the ha2ardous nature of sodium treatment. [Pg.483]

Oxidation. Naphthalene may be oxidized direcdy to 1-naphthalenol (1-naphthol [90-15-3]) and 1,4-naphthoquinone, but yields are not good. Further oxidation beyond 1,4-naphthoquinone [130-15-4] results in the formation of ortho- h. h5 ic acid [88-99-3], which can be dehydrated to form phthaUc anhydride [85-44-9]. The vapor-phase reaction of naphthalene over a catalyst based on vanadium pentoxide is the commercial route used throughout the world. In the United States, the one phthaUc anhydride plant currently operating on naphthalene feedstock utilizes a fixed catalyst bed. The fiuid-bed process plants have all been shut down, and the preferred route used in the world is the fixed-bed process. [Pg.484]

The naphthalene is vaporized, mixed with air, and fed to the top of the reactor. This process also allows for mixtures of ortho- s.yXen.e [95-47-6] to be mixed with the naphthalene and air, which permits the use of dual feedstocks. Both feedstocks are oxidized to phthaUc anhydride. The typical range of reactor temperature is 340—380°C. The reactor temperatures are controlled by an external molten salt. [Pg.484]

The quahty of naphthalene required for phthaUc anhydride manufacture is generally 95% minimum purity. The fixed plants do not require the high (>98%) purity naphthalene product and low (<50 ppm) sulfur. The typical commercial coal-tar naphthalene having a purity ca 95% (freezing point, 77.5°C), a sulfur content of ca 0.5%, and other miscellaneous impurities, is acceptable feedstock for the fixed-bed catalyst process based on naphthalene. [Pg.484]

The coal tar first is processed through a tar-distillation step where ca the first 20 wt % of distillate, ie, chemical oil, is removed. The chemical oil, which contains practically all the naphthalene present in the tar, is reserved for further processing, and the remainder of the tar is distilled further to remove additional creosote oil fractions until a coal-tar pitch of desirable consistency and properties is obtained. [Pg.484]

The chemical oil contains ca 50 wt % naphthalene, 6 wt % tar acids, 3 wt % tar bases, and numerous other aromatic compounds. The chemical oil is processed to remove the tar acids by contacting with dilute sodium hydroxide and, in a few cases, is next treated to remove tar bases by washing with sulfuric acid. [Pg.484]

The preferred route to higher purity naphthalene, either coal-tar or petroleum, is crystallisation. This process has demonstrated significant energy cost savings and yield improvements. There are several commercial processes available Sulser-MWB, Brodie type. Bets, and Recochem (37). [Pg.486]

Methyl- and dimethylnaphthalenes are contained in coke-oven tar and in certain petroleum fractions in significant amounts. A typical high temperature coke-oven coal tar, for example, contains ca 3 wt % of combined methyl- and dimethylnaphthalenes (6). In the United States, separation of individual isomers is seldom attempted instead a methylnaphtha1 ene-rich fraction is produced for commercial purposes. Such mixtures are used for solvents for pesticides, sulfur, and various aromatic compounds. They also can be used as low freezing, stable heat-transfer fluids. Mixtures that are rich in monomethyinaphthalene content have been used as dye carriers (qv) for color intensification in the dyeing of synthetic fibers, eg, polyester. They also are used as the feedstock to make naphthalene in dealkylation processes. PhthaUc anhydride also can be made from m ethyl n aph th al en e mixtures by an oxidation process that is similar to that used for naphthalene. [Pg.487]

Naphthalene derivatives are of diverse importance as intermediates for agricultural, constmction, pharmaceutical, photographic, mbber, tanning, and textile chemicals. In this article production figures, economics, and processes are discussed for most commercially important compounds. Sources for a more comprehensive study of naphthalene derivatives are available (1 8). [Pg.489]

Naphthalenesulfonic Acid. The sulfonation of naphthalene with excess 96 wt % sulfuric acid at < 80°C gives > 85 wt % 1-naphthalenesulfonic acid (a-acid) the balance is mainly the 2-isomer (P-acid). An older German commercial process is based on the reaction of naphthalene with 96 wt % sulfuric acid at 20—50°C (13). The product can be used unpurifted to make dyestuff intermediates by nitration or can be sulfonated further. The sodium salt of 1-naphthalenesulfonic acid is required, for example, for the conversion of 1-naphthalenol (1-naphthol) by caustic fusion. In this case, the excess sulfuric acid first is separated by the addition of lime and is filtered to remove the insoluble calcium sulfate the filtrate is treated with sodium carbonate to precipitate calcium carbonate and leave the sodium l-naphthalenesulfonate/7J(9-/4-J7 in solution. The dry salt then is recovered, typically, by spray-drying the solution. [Pg.489]

A naphthalene sulfonation product that is rich in the 2,6-isomer and low in sulfuric acid is formed by the reaction of naphthalene with excess sulfuric acid at 125°C and by passing the resultant solution through a continuous wiped-film evaporator at 245°C at 400 Pa (3 mm Hg) (26). The separation in high yield of 99% pure 2,6-naphthalenedisulfonate, as its anilinium salt from a cmde sulfonation product, has been claimed (27). A process has been patented for the separation of 2,6-naphthalenedisulfonic acid from its isomers by treatment with phenylenediarnine (28). [Pg.491]

H-acid, l-hydroxy-3,6,8-ttisulfonic acid, which is one of the most important letter acids, is prepared as naphthalene is sulfonated with sulfuric acid to ttisulfonic acid. The product is then nitrated and neutralized with lime to produce the calcium salt of l-nitronaphthalene-3,6,8-ttisulfonic acid, which is then reduced to T-acid (Koch acid) with Fe and HCl modem processes use continuous catalytical hydrogenation with Ni catalyst. Hydrogenation has been performed in aqueous medium in the presence of Raney nickel or Raney Ni—Fe catalyst with a low catalyst consumption and better yield (51). Fusion of the T-acid with sodium hydroxide and neutralization with sulfuric acid yields H-acid. Azo dyes such as Direct Blue 15 [2429-74-5] (17) and Acid... [Pg.494]

NaOH solution is added dropwise to an aqueous suspension of this ester at 40—70°C over 1 h and the reaction mixture kept for 2 h to give 86.6% DHNA of 98.7% purity (74), which is then esterified with (CgH O) to obtain PDNA. The esterification process is dramatically improved by adding a small amount of inorganic or organic acid, preferably methanesulfonic acid, benzene sulfonic acid, or naphthalene sulfonic acid subsequent isolation and crystallisation gives a pure product (75). [Pg.500]

Manufacture and Processing. Until World War II, phthaUc acid and, later, phthaUc anhydride, were manufactured primarily by Hquid-phase oxidation of suitable feedstocks. The favored method was BASF s oxidation of naphthalene [91-20-3] by sulfuric acid ia the presence of mercury salts to form the anhydride. This process was patented ia 1896. During World War I, a process to make phthaUc anhydride by the oxidation of naphthalene ia the vapor phase over a vanadium and molybdenum oxide catalyst was developed ia the United States (5). Essentially the same process was developed iadependendy ia Germany, with U.S. patents being granted ia 1930 and 1934 (6,7). [Pg.482]


See other pages where Naphthalene processes is mentioned: [Pg.202]    [Pg.806]    [Pg.202]    [Pg.806]    [Pg.1608]    [Pg.305]    [Pg.34]    [Pg.948]    [Pg.211]    [Pg.161]    [Pg.162]    [Pg.390]    [Pg.309]    [Pg.484]    [Pg.486]    [Pg.491]    [Pg.491]    [Pg.492]    [Pg.496]    [Pg.504]    [Pg.504]    [Pg.483]   
See also in sourсe #XX -- [ Pg.255 , Pg.256 ]

See also in sourсe #XX -- [ Pg.255 , Pg.256 ]




SEARCH



© 2024 chempedia.info