Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Myosin components

From 1945 on, Dubuisson has examined electrophoretically in the Tiselius apparatus extracts of muscle prepared with extracting media of differing salt content. By this means, he found three myosin components, a, /3 and y. It is almost certain that /3-myosin is identical with L-myosin and a-myosin with actomyosin (Table V). 7-Myosin seems to be identical with contractin (cf. Section IV, 3). The Y-protein may... [Pg.194]

No new X-ray data have become available since the summary in this journal by Bailey in 1944. The X-ray examination of actin (Astbury ei al., 1947) has shown indirectly that the wide angle diagram of myosin (actomyosin-L-myosin mixture) is that of the L-myosin component. The relation between the X-ray data and amino acid analysis was also thoroughly discussed by Bailey (1944) in the same review. Few modifications in the amino-acid composition have been made since that time, and the present position cf. Bailey, 1948) is given in Table X. [Pg.207]

The appearance of y-myosin, however, cannot so readily be explained. It could be due to a change in the charge of one of the myosin components or to the liberation of a preformed component which in resting muscle is too strongly bound to be extractable or to the formation of a new substance from other proteins. At present, it is not possible to decide between these possibilities, but any one of them would indicate clearly that contraction involves protein reactions of which we have little cognizance, and which are not brought out in electron microscope studies. [Pg.245]

Paramyosin, a major structural component of thick filaments. It occurs exclusively in invertebrate organisms, where it is widely distributed. Paramyosin is found in varying quantities in different muscles types ranging from smooth to cross-striated muscles. It interacts with the core proteins within the thick myofilaments as well as with the surrounding myosin components, thus stabilizing the thick myofilaments. It is not a component of the cytoskeleton [L. Winkelman, Comp. Biochem. Physiol. B 1976, 55, 391 P. R. Deitiker, H. F. Epstein, J. Cell Biol. 1993, 123, 303]. [Pg.258]

Certain proteins endow cells with unique capabilities for movement. Cell division, muscle contraction, and cell motility represent some of the ways in which cells execute motion. The contractile and motile proteins underlying these motions share a common property they are filamentous or polymerize to form filaments. Examples include actin and myosin, the filamentous proteins forming the contractile systems of cells, and tubulin, the major component of microtubules (the filaments involved in the mitotic spindle of cell division as well as in flagella and cilia). Another class of proteins involved in movement includes dynein and kinesin, so-called motor proteins that drive the movement of vesicles, granules, and organelles along microtubules serving as established cytoskeletal tracks. ... [Pg.124]

Even though dynein, kinesin, and myosin serve similar ATPase-dependent chemomechanical functions and have structural similarities, they do not appear to be related to each other in molecular terms. Their similarity lies in the overall shape of the molecule, which is composed of a pair of globular heads that bind microtubules and a fan-shaped tail piece (not present in myosin) that is suspected to carry the attachment site for membranous vesicles and other cytoplasmic components transported by MT. The cytoplasmic and axonemal dyneins are similar in structure (Hirokawa et al., 1989 Holzbaur and Vallee, 1994). Current studies on mutant phenotypes are likely to lead to a better understanding of the cellular roles of molecular motor proteins and their mechanisms of action (Endow and Titus, 1992). [Pg.17]

The analytic validity of an abstract parallel elastic component rests on an assumption. On the basis of its presumed separate physical basis, it is ordinarily taken that the resistance to stretch present at rest is still there during activation. In short, it is in parallel with the filaments which generate active force. This assumption is especially attractive since the actin-myosin system has no demonstrable resistance to stretch in skeletal muscle. However, one should keep in mind, for example, that in smooth muscle cells there is an intracellular filament system which runs in parallel with the actin-myosin system, the intermediate filament system composed of an entirely different set of proteins, (vimentin, desmin, etc.), whose mechanical properties are essentially unknown. Moreover, as already mentioned, different smooth muscles have different extracellular volumes and different kinds of filaments between the cells. [Pg.165]

Organization into macromolecular structures. There are no apparent templates necessary for the assembly of muscle filaments. The association of the component proteins in vitro is spontaneous, stable, and relatively quick. Filaments will form in vitro from the myosins or actins from all three kinds of muscle. Yet in vitro smooth muscle myosin filaments are found to be stable only in solutions somewhat different from in vivo conditions. The organizing principles which govern the assembly of myosin filaments in smooth muscle are not well understood. It is clear, however, a filament is a sturdy structure and that individual myosin molecules go in and out of filaments whose structure remains in a functional steady-state. As described above, the crossbridges sticking out of one side of a smooth muscle myosin filament are all oriented and presumably all pull on the actin filament in one direction along the filament axis, while on the other side the crossbridges all point and pull in the opposite direction. The complement of minor proteins involved in the structure of the smooth muscle myosin filament is unknown, albeit not the same as that of skeletal muscle since C-protein and M-protein are absent. [Pg.170]

Figure 49-3. Schematic representation of the thin fiiament, showing the spatiai configuration of its three major protein components actin, myosin, and tropomyosin. The upper panei shows individual molecules of G-actin. The middle panel shows actin monomers assembled into F-actin. Individual molecules of tropomyosin (two strands wound around one another) and of troponin (made up of its three subunits) are also shown. The lower panel shows the assembled thin filament, consisting of F-actin, tropomyosin, and the three subunits of troponin (TpC, Tpl, andTpT). Figure 49-3. Schematic representation of the thin fiiament, showing the spatiai configuration of its three major protein components actin, myosin, and tropomyosin. The upper panei shows individual molecules of G-actin. The middle panel shows actin monomers assembled into F-actin. Individual molecules of tropomyosin (two strands wound around one another) and of troponin (made up of its three subunits) are also shown. The lower panel shows the assembled thin filament, consisting of F-actin, tropomyosin, and the three subunits of troponin (TpC, Tpl, andTpT).
Myosin-ATP has a low affinity for actin, and actin is thus released. This last step is a key component of relaxation and is dependent upon the binding of ATP to the actin-myosin complex. [Pg.561]

In striated muscle, there are two other proteins that are minor in terms of their mass but important in terms of their function. Tropomyosin is a fibrous molecule that consists of two chains, alpha and beta, that attach to F-actin in the groove between its filaments (Figure 49-3). Tropomyosin is present in all muscular and muscle-fike structures. The troponin complex is unique to striated muscle and consists of three polypeptides. Troponin T (TpT) binds to tropomyosin as well as to the other two troponin components. Troponin I (Tpl) inhibits the F-actin-myosin interaction and also binds to the other components of troponin. Troponin C (TpC) is a calcium-binding polypeptide that is structurally and functionally analogous to calmodulin, an important calcium-binding protein widely distributed in nature. Four molecules of calcium ion are bound per molecule of troponin C or calmodulin, and both molecules have a molecular mass of 17 kDa. [Pg.562]

The muscle fibrils are embedded in sarcoplasm, each individual fibril showing the banding pattern of the whole fiber (Bowman, 1840). Myosin could be extracted from muscle with strong salt solutions. From the altered appearance of the bands after extraction it was suggested that this protein was a major component of the A bands (Kuhne,1864 Danilewsky, 1881). The localization of myosin in the A bands and of actin in the I bands was convincingly shown by Jean Hanson and Hugh Huxley (1954-1955) in electron micrographs of transected fibers and confirmed after selective extraction to remove myosin (Hasselbach, 1953 Hanson and H.E. Huxley, 1953-1955). [Pg.64]

Figure 13.5 Electron micrograph of part of a longitudinal section of a myofibril. Identification of components and the mechanism of contraction. When a muscle fibre is stimulated to contract, the actin and myosin filaments react by sliding past each other but with no change in length of either myofilament. The thick myosin strands in the A band are relatively stationary, whereas the thin actin filaments, which are attached to the Z discs, extend further into the A band and may eventually obliterate the H band. Because the thin filaments are attached to Z discs, the discs are drawn toward each other, so that the sarcomeres, the distance between the adjacent Z-discs, are compressed, the myofibril is shortened, and contraction of the muscle occurs. Contraction, therefore, is not due to a shortening of either the actin or the myosin filaments but is due to an increase in the overlap between the filaments. The force is generated by millions of cross-bridges interacting with actin filaments (Fig. 13.6). The electron micrograph was kindly provided by Professor D.S. Smith. Figure 13.5 Electron micrograph of part of a longitudinal section of a myofibril. Identification of components and the mechanism of contraction. When a muscle fibre is stimulated to contract, the actin and myosin filaments react by sliding past each other but with no change in length of either myofilament. The thick myosin strands in the A band are relatively stationary, whereas the thin actin filaments, which are attached to the Z discs, extend further into the A band and may eventually obliterate the H band. Because the thin filaments are attached to Z discs, the discs are drawn toward each other, so that the sarcomeres, the distance between the adjacent Z-discs, are compressed, the myofibril is shortened, and contraction of the muscle occurs. Contraction, therefore, is not due to a shortening of either the actin or the myosin filaments but is due to an increase in the overlap between the filaments. The force is generated by millions of cross-bridges interacting with actin filaments (Fig. 13.6). The electron micrograph was kindly provided by Professor D.S. Smith.
The interaction between actin and myosin leads to contraction and the generation of force, in some cases very great force (Figure 13.9). The process is known as the cross-bridge cycle, the components of which are ... [Pg.282]

Interestingly, the dumbbell component of a molecular shuttle exerts on the ring motion the same type of directional restriction as imposed by the protein track for linear biomolecular motors (an actin filament for myosin and a microtubule for kinesin and dynein).4 It should also be noted that interlocked molecular architectures are largely present in natural systems—for instance, DNA catenanes and rotaxanes... [Pg.378]

Three principal components of the cytoskeleton are microfilaments of 6 nm diameter, microtubules of 23-25 nm diameter, and intermediate filaments of 10 nm diameter. A large number of associated proteins provide for interconnections, for assembly, and for disassembly of the cytoskeleton. Other proteins act as motors that provide motion. One of these motors is present in myosin of muscle. This protein is not only the motor for muscular work but also forms thick filaments of 12-16 nm diameter, which are a major structural component of muscle (see Fig. 19-6). [Pg.369]

The idea of conformational coupling of ATP synthesis and electron transport is especially attractive when we recall that ATP is used in muscle to carry out mechanical work. Here we have the hydrolysis of ATP coupled to motion in the protein components of the muscle. It seems reasonable that ATP should be formed as a result of motion induced in the protein components of the ATPase. Support for this analogy has come from close structural similarities of the F, ATPase P subunits and of the active site of ATP cleavage in the muscle protein myosin (Chapter 19). [Pg.1044]


See other pages where Myosin components is mentioned: [Pg.212]    [Pg.77]    [Pg.212]    [Pg.77]    [Pg.1144]    [Pg.202]    [Pg.127]    [Pg.290]    [Pg.1144]    [Pg.544]    [Pg.504]    [Pg.163]    [Pg.165]    [Pg.169]    [Pg.180]    [Pg.209]    [Pg.563]    [Pg.292]    [Pg.142]    [Pg.164]    [Pg.8]    [Pg.129]    [Pg.388]    [Pg.840]    [Pg.265]    [Pg.116]    [Pg.367]    [Pg.69]    [Pg.353]    [Pg.355]    [Pg.362]    [Pg.426]    [Pg.48]    [Pg.495]    [Pg.182]    [Pg.183]   
See also in sourсe #XX -- [ Pg.194 ]




SEARCH



Myosin

© 2024 chempedia.info