Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Monoamine oxidase inhibitors action

Normally, dietary tyramine is broken down in the gastrointestinal tract by MAO and is not absorbed. In the presence of MAOI, however, all of its potent sympathomimetic actions are seen. Other side effects of MAOI include excessive CNS stimulation, orthostatic hypotension, weight gain, and in rare cases hepatotoxicity. Because the monoamine oxidase inhibitors exhibit greater toxicity, yet no greater therapeutic response than other, newer agents, clinical use has been markedly curtailed. The primary use for MAOIs is in the treatment of atypical depressions, eg, those associated with increased appetite, phobic anxiety, hypersomnolence, and fatigues, but not melancholia (2). [Pg.466]

Levodopa interacts with many different drugs. When levodopa is used with phenytoin, reserpine, and papaverine, there is a decrease in response to levodopa The risk of a hypertensive crisis increases when levodopa is used with the monoamine oxidase inhibitors (see Chap. 31). Foods high in pyridoxine (vitamin B6) or vitamin B6 preparations reverse the effect of levodopa However, when carbidopa is used with levodopa, pyridoxine has no effect on the action of levodopa hi fact, when levodopa and carbidopa are given together, pyridoxine may be prescribed to decrease the adverse effects associated with levodopa... [Pg.267]

Serious adverse effects of epinephrine potentially occur when it is given in an excessive dose, or too rapidly, for example, as an intravenous bolus or a rapid intravenous infusion. These include ventricular dysrhythmias, angina, myocardial infarction, pulmonary edema, sudden sharp increase in blood pressure, and cerebral hemorrhage. The risk of epinephrine adverse effects is also potentially increased in patients with hypertension or ischemic heart disease, and in those using (3-blockers (due to unopposed epinephrine action on vascular Ui-adrenergic receptors), monoamine oxidase inhibitors, tricyclic antidepressants, or cocaine. Even in these patients, there is no absolute contraindication for the use of epinephrine in the treatment of anaphylaxis [1,5,6]. [Pg.213]

Two rather broad structural classes account for the large majority of drugs that have proven useful in the clinic for treating depression. Each of these has associated with it some clearly recognized side effects the monoamine oxidase inhibitors, most commonly derivatives of hydrazine, tend to have undesirable effects on blood pressure the tricyclic compounds on the other hand may cause undesirable changes in the heart. Considerable effort has thus been expended toward the development of antidepressants that fall outside those structural classes. An unstated assumption in this work is the belief that very different structures will be associated with a novel mechanism of action and a different set of ancillary activities. One such compound, trazodone... [Pg.472]

Mclsaac, W., Estevez, V. Structure-action relationship of beta-carbolines as monoamine oxidase inhibitors. Biochem. Pharmacol. 15 1625, 1966. [Pg.50]

Resnick, O., Krus, D. M., and Raskin, M. (1964) LSD-25 action in normal subjects treated with a monoamine oxidase inhibitor. Life Sci., 3 1207-1214. [Pg.230]

Listing of antidepressants grouped by principal mechanism of action in the synapse. Abbreviations MAOI—irreversible = irreversible monoamine oxidase inhibitor MAOI—reversible = reversible monoamine oxidase inhibitor NDRl = norepinephrine/ dopamine reuptake inhibitor NRI = norepinephrine reuptake inhibitor NSRl = norepinephrine/serotonin reuptake inhibitor NSSA = norepinephrine/specific serotonin agonist SRI = serotonin reuptake inhibitor SRl/serotonin-2 blocker = serotonin reuptake inhibitor and serotonin-2 receptor antagonist. [Pg.48]

Monoamine Oxidase inhibitors (MAOis). The first antidepressant discovered was iproniazid. This medication was developed in the early 1950s as a treatment for tuberculosis but was unexpectedly found to improve mood in depressed patients. It was later found that its antidepressant effect was due to its action on the MAO enzymes. Unfortunately, iproniazid was subsequently found to cause liver damage and was withdrawn from the market. [Pg.50]

Monoamine Oxidase inhibitors (MAOis). Developed in the 1950s, the MAOIs were the first class of antidepressants. Subsequently, in the 1960s, the MAOis were also found to be effective anxiolytics. Unlike benzodiazepines and barbiturates, the MAOis are not addictive however, their onset of action is delayed not by minutes or hours but by 3 weeks or more. [Pg.132]

Recently research has focused on the action of lithium on serotonergic function. Lithium has been shown to facilitate the uptake and synthesis of 5-HT, to enhance its release and to increase the transport of tryptophan into the nerve terminal, an effect which probably contributes to the increased 5-HT synthesis. The net effect of these changes is to produce postsynaptic receptor events, which might explain why lithium, in combination with tryptophan and a monoamine oxidase inhibitor or a 5-HT uptake inhibitor, is often effective in therapy-resistant depression. [Pg.203]

Many antidepressant drugs have pronounced effects on sleep. Several tricyclic compounds (amitriptyline and others) have sedative actions while others (imipramine and others) are less sedative or even stimulant. Monoamine oxidase inhibitors (MAOIs) have central stimulant effects and may cause insomnia. Specific serotonin reuptake inhibitors (SSRls) and combined serotonin, noradrenaline reuptake inhibitors (SNRIs) can also cause insomnia. [Pg.165]

Amphetamine and cocaine also increase noradrenaline release and a number of drugs with mainly noradrenergic actions can also cause a hyperactive delirium. These include ephedrine, phenylpropanolamine, aminophylline, maprotiline and monoamine oxidase inhibitors (Hollister, 1986). [Pg.184]

The growth during the 1990s in the use of antidepressants, particularly selective serotonin reuptake inhibitors (SSRIs), for the treatment of anxiety disorders represented a major advance in the pharmacotherapy of anxiety. The efficacy of tricyclic antidepressants (TCAs) and monoamine oxidase inhibitors (MAOIs) had been established alongside their antidepressantw actions several decades... [Pg.478]

E.D. Hendley, S.H. Snyder, The relationship between the action of monoamine oxidase inhibitors on the noradrenaline uptake system and their antidepressant efficacy. Nature 220 (1968) 1330-1331. [Pg.691]

It became obvious, however, that psychostimulants were not effective in situations of lowered arousal resulting from mood depression. In the 1950s, antidepressants such as the monoamine oxidase inhibitors (MAOIs) and tricyclic antidepressants (TCAs) became recognized as more effective in treating depression. The differentiation between arousal and mood thus became clearer. It is through the action of drugs that sedate and thus reduce anxiety versus those drugs that do not sedate but are anxiolytic that the basic concepts of anxiety have forcibly to be reconsidered. This inevitably led to the need for a reconceptualization of psychotropic modes of action in relation to psychiatric disorders. [Pg.38]

Monoamine oxidase inhibitors (MAOIs) are useful as thymoleptic (antidepressant) drugs, especially since the action of some of these agents is very rapid, as compared to the lag period of days or even weeks shown by tricyclic antidepressants. All MAOIs act by increasing the available concentration of the neurotransmitters NE and 5-HT which, because they are not metabolized, accumulate in the synaptic gap and exert an increased postsynaptic effect. The drugs show hypotensive activity as a side effect, and some MAOIs are used as hypotensive drugs. [Pg.498]

The first psychotropics of the modern era (e.g., lithium, neuroleptic antipsychotics, tricyclic and monoamine oxidase inhibitor antidepressants) were discovered serendipitously. These agents were not engineered to have selective actions, but instead produce a wide range of central biochemical effects and generally affect more than one neurotransmitter system simultaneously, resulting in multiple repercussions ... [Pg.12]

M, metaboiism S, at or near site of action IV, intravenously MHS, malignant hyperthermia syndrome ALA, aianine ICU, intensive care unit CNS, central nervous system MAOI, monoamine oxidase inhibitor, NSAID, non-steroidal anti-inflammatory drug ACE, angiotensin in-converting enzyme 5-HT, 5-hydrox ryptamine. [Pg.272]

A growing number of drugs are used that affect the many neurotransmitters in the brain benzodiazepines and others act on GABAergic transmission antidepressants, such as monoamine oxidase inhibitors and tricyclic antidepressants, are thought to increase the concentration of transmitter amines in the brain and so elevate mood—these will also act at peripheral nerve terminals, so interactions with them are a combination of peripheral and central actions. Levodopa (L-dopa) increases central as well as peripheral dopamine, and the newer class of psychoactive drugs, the selective serotonin reuptake inhibitors (SSRIs) of which the ubiquitous fluoxetine (Prozac) is best known, act in a similar way on serotonergic pathways. [Pg.273]

The positive effects of the monoamine oxidase inhibitor isoniazid and the amine reuptake blocker imipramine were both discovered by accident. Isoniazid was being used as an antitubercular drug when patients reports of elation led Nathan Kline to test and to demonstrate its antidepressant power. Ronald Kuhn had synthesized imipramine, a tricyclic molecule, as a possible me-too analog of chlorpromazine. When Kuhn found that it had little or no antipsychotic potential, he tried it out on depressives, and voila They got better. After a while, that is. As with isoniazid, imip-ramine s antidepressant action was evident only after one to four weeks of administration. [Pg.220]

Monoamine oxidase inhibitors MAO is found in neural and other tissues, such as the gut and liver. In the neuron, this enzyme functions as a "safety valve" to oxidatively deaminate and inacti vate any excess neurotransmitter molecules (norepinephrine, dopamine, or serotonin) that may leak out of synaptic vesicles when the neuron is at rest. The MAO inhibitors2 may irreversibly or reversibly inactivate the enzyme, permitting neurotransmitter molecules to escape degradation and, therefore, to both accumu late within the presynaptic neuron and to leak into the synaptic space. This causes activation of norepinephrine and serotonin receptors, and may be responsible for the antidepressant action of these drugs. [Pg.284]

FIGURE 9-6. Various treatments can be given in combination for panic disorder (i.e., panic combos). The basis of all many combination treatments is a serotonin selective reuptake inhibitor (SSRI). Other antidepressants such as venlafaxine, nefazodone, mirtazapine, tricyclic antidepressants, and monoamine oxidase inhibitors can all have antipanic actions, although they are second-line treatments, as are the benzodiazepines. On the other hand, benzodiazepines are often added to SSRIs, particularly at the initiation of an SSRI and intermittently when there is breakthrough panic. Cognitive and behavioral psychotherapies can also be added to any of these drug treatments. [Pg.356]

Considerable attention has been paid to the ultimate postsynaptic effects of increased neurotransmitters in the synapses. In tests of postsynaptic effects, cAMP concentrations have consistently decreased rather than increased, in spite of the presumably longer duration of action of the transmitters. In addition, the number of postsynaptic -adrenoceptors has shown a measurable decrease that follows the same delayed time course as clinical improvement in patients. Thus, the initial increase in neurotransmitter seen with some antidepressants appears to produce, over time, a compensatory decrease in receptor activity, ie, down-regulation of receptors. Decreases in norepinephrine-stimulated cAMP and in B-adrenoceptor binding have been conclusively shown for selective norepinephrine uptake inhibitors, those with mixed action on norepinephrine and serotonin, monoamine oxidase inhibitors, and even electroconvulsive therapy. Such changes do not consistently occur after the selective serotonin uptake inhibitors, 2 receptor antagonists, and mixed serotonin antagonists. [Pg.678]


See other pages where Monoamine oxidase inhibitors action is mentioned: [Pg.465]    [Pg.469]    [Pg.504]    [Pg.573]    [Pg.30]    [Pg.31]    [Pg.33]    [Pg.171]    [Pg.238]    [Pg.26]    [Pg.226]    [Pg.46]    [Pg.186]    [Pg.275]    [Pg.58]    [Pg.201]    [Pg.259]    [Pg.354]    [Pg.680]    [Pg.351]    [Pg.236]    [Pg.13]    [Pg.29]    [Pg.451]   
See also in sourсe #XX -- [ Pg.156 , Pg.157 , Pg.179 , Pg.185 ]




SEARCH



Action inhibitors

Monoamine inhibitors

Monoamine oxidase

Monoamine oxidase action

Monoamine oxidase inhibitors

Monoamine oxidase inhibitors mechanism of action

Oxidase inhibitors

Oxidases monoamine oxidase

© 2024 chempedia.info