Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular layer epitaxy

In this contribution we introduce a new method for oiganic multilayered heterostructures deposition. Molecular Layer Epitaxy (MLE), that in a sense is widering the... [Pg.402]

In the new method for organic multilayers deposition, molecular layer epitaxy (MLE), the epitaxial growth is achieved by self-limited vapor-phase reactions on a templated surface. As in ALE method, MLE is governed by covalent bonding at the intermolecular level that leads to ideal monomolecular growth. The chemical principles of the MLE method can be divided into four levels (i) a template layer, (ii) self-restricted vapor phase reactions, (Hi) covalent ( c-axis ) interlayer bonding and (iv) 7C-stacking in x-y plane. [Pg.403]

Figure 2. Molecular layer epitaxy 4LE) conceptual approach for the formation of organio multiple quantum well (OMQW) structures. Figure 2. Molecular layer epitaxy 4LE) conceptual approach for the formation of organio multiple quantum well (OMQW) structures.
Molecular Layer Epitaxy via Chemical Vapor Deposition routes. [Pg.405]

Silicon Epitaxy. A critical step ia IC fabricatioa is the epitaxial depositioa of sdicoa oa an iategrated circuit. Epitaxy is defined as a process whereby a thin crystalline film is grown on a crystalline substrate. Silicon epitaxy is used ia bipolar ICs to create a high resistivity layer oa a low resistivity substrate. Most epitaxial depositioas are doae either by chemical vapor depositioa (CVD) or by molecular beam epitaxy (MBE) (see Thin films). CVD is the mainstream process. [Pg.346]

Epitaxial crystal growth methods such as molecular beam epitaxy (MBE) and metalorganic chemical vapor deposition (MOCVD) have advanced to the point that active regions of essentially arbitrary thicknesses can be prepared (see Thin films, film deposition techniques). Most semiconductors used for lasers are cubic crystals where the lattice constant, the dimension of the cube, is equal to two atomic plane distances. When the thickness of this layer is reduced to dimensions on the order of 0.01 )J.m, between 20 and 30 atomic plane distances, quantum mechanics is needed for an accurate description of the confined carrier energies (11). Such layers are called quantum wells and the lasers containing such layers in their active regions are known as quantum well lasers (12). [Pg.129]

Fig. 4. Schematic of an ultrahigh vacuum molecular beam epitaxy (MBE) growth chamber, showing the source ovens from which the Group 111—V elements are evaporated the shutters corresponding to the required elements, such as that ia front of Source 1, which control the composition of the grown layer an electron gun which produces a beam for reflection high energy electron diffraction (rheed) and monitors the crystal stmcture of the growing layer and the substrate holder which rotates to provide more uniformity ia the deposited film. After Ref. 14, see text. Fig. 4. Schematic of an ultrahigh vacuum molecular beam epitaxy (MBE) growth chamber, showing the source ovens from which the Group 111—V elements are evaporated the shutters corresponding to the required elements, such as that ia front of Source 1, which control the composition of the grown layer an electron gun which produces a beam for reflection high energy electron diffraction (rheed) and monitors the crystal stmcture of the growing layer and the substrate holder which rotates to provide more uniformity ia the deposited film. After Ref. 14, see text.
For construction of suitable samples molecular beam epitaxy was selected, the method of choice for the production of complicated epitaxial layer systems with different materials. As substrates Si wafer material (about 20x20 mm-, thickness 1 mm) and SiO, discs (diameter 30 mm, thickness 3 mm) were used. Eight layered structures (one, two and three layers) were built up with Al, Co, and Ni, with an indicated thickness of 70 nm, each. [Pg.411]

Recent applications of e-beam and HF-plasma SNMS have been published in the following areas aerosol particles [3.77], X-ray mirrors [3.78, 3.79], ceramics and hard coatings [3.80-3.84], glasses [3.85], interface reactions [3.86], ion implantations [3.87], molecular beam epitaxy (MBE) layers [3.88], multilayer systems [3.89], ohmic contacts [3.90], organic additives [3.91], perovskite-type and superconducting layers [3.92], steel [3.93, 3.94], surface deposition [3.95], sub-surface diffusion [3.96], sensors [3.97-3.99], soil [3.100], and thermal barrier coatings [3.101]. [Pg.131]

An important method for producing semiconductor layers is the so-called molecular beam epitaxy (MBE) (see [3,12-14] and [15-19]). Here, atoms of the same or of a different material are deposited from the vapor source onto a faceted crystal surface. The system is always far from thermal equilibrium because the deposition rate is very high. Note that in this case, in principle, every little detail of the experimental setup may influence the results. [Pg.884]

MBE growth of very thin layer of boron and silicon. The problems associated with boron implant and laser anneal can be overcome by growing a very thin (5 nm) layer of silicon with boron atoms on the backside of the thinned CCD (1% boron, 99% silicon). The growth is applied by molecular beam epitaxy (MBE) machines. This process was developed by JPL and MIT/LL. [Pg.140]

The results of the ellipsometric study are presented in Table 9. As is clear from the table, the resultant average thickness of the semiconductor layer, obtained from one bilayer precursor, is about 0.8 nm. This value can be considered the thickness resolution of this technique. It is worth mentioning that among the available techniques, only molecular beam epitaxy allows one to reach such resolution. However, the proposed technique is much simpler and does not require complicated or expensive equipment. [Pg.187]

The proposed technique seems to be rather promising for the formation of electronic devices of extremely small sizes. In fact, its resolution is about 0.5-0.8 nm, which is comparable to that of molecular beam epitaxy. However, molecular beam epitaxy is a complicated and expensive technique. All the processes are carried out at 10 vacuum and repair extrapure materials. In the proposed technique, the layers are synthesized at normal conditions and, therefore, it is much less expansive. The presented results had demonstrated the possibility of the formation of superlattices with this technique. The next step will be the fabrication of devices based on these superlattices. To begin with, two types of devices wiU be focused on. The first will be a resonant tunneling diode. In this case the quantum weU will be surrounded by two quantum barriers. In the case of symmetrical structure, the resonant... [Pg.189]

Summarizing, it is possible to conclude that the technique of forming ultrasmall semiconductor particles turned out to be a powerful tool for building up single-electron junctions, even working at room temperature, as well as thin semiconductor layers and superlattices with structural features, reachable in the past only via molecular beam epitaxy. [Pg.190]

McPhail (1989) gives a detailed account of the experimental approach to depth profiling of semiconductors, including the quantification of the data. He illustrates the analysis of a silicon epilayer grown by molecular beam epitaxy (MBE) in which 11 boron-rich layers were incorporated by co-evaporation of boron. The intended structure is shown in Figure 4.8, and it was desirable to establish the concentration of boron in the layers, the inter-peak concentration and the sharpness of the doping transitions. [Pg.80]

In molecular beam epitaxy (MBE), the constituent elements of the desired film in the form of molecular beams are deposited epitaxially onto a heated crystalline substrate. These molecular beams are typically from thermally evaporated elemental sources (e.g., evaporation of elemental As produces molecules of As2, As3, and As4). A refinement of this is atomic layer epitaxy (ALE) (also known as atomic layer deposition, ALD) in which the substrate is exposed alternately to two... [Pg.702]

The deposition of a wide range of materials using beams of elemental sources in high-vacuum apparatus (10-4—10-8 torr), essentially by physical methods, is known as molecular beam epitaxy (MBE)8 12 and atomic layer epitaxy (ALE). These methods will be mentioned where there is an overlap with CVD techniques, but will not be fully reviewed. (They are mentioned also in Chapter 9.15). [Pg.1012]

Chemical Vapor Deposition Electrochemical Deposition Molecular Beam Epitaxy Atomic Layer Deposition Thermal Oxidation Spin Coating... [Pg.390]


See other pages where Molecular layer epitaxy is mentioned: [Pg.356]    [Pg.8]    [Pg.399]    [Pg.403]    [Pg.356]    [Pg.8]    [Pg.399]    [Pg.403]    [Pg.301]    [Pg.391]    [Pg.136]    [Pg.435]    [Pg.436]    [Pg.366]    [Pg.368]    [Pg.529]    [Pg.508]    [Pg.265]    [Pg.147]    [Pg.220]    [Pg.266]    [Pg.269]    [Pg.411]    [Pg.303]    [Pg.190]    [Pg.162]    [Pg.25]    [Pg.96]    [Pg.235]    [Pg.92]    [Pg.98]    [Pg.465]    [Pg.232]   
See also in sourсe #XX -- [ Pg.402 ]




SEARCH



Epitaxial

Epitaxial layers

Epitaxis

Epitaxy, epitaxial

Molecular epitaxy

Molecular layering

© 2024 chempedia.info