Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Moisture insulators

USE OF PE FOAM AS A HEAT- AND MOISTURE-INSULATING ENVELOPE FOR A HEAT-CONDUCTIVE SYSTEM (SUCH AS HOT-WATER PIPES)... [Pg.114]

FIGURE 57.24 Test coupons used to check moisture, insulation, and metal migration resistance (a) the IPC-B-25 test board, used to qualify the process (b) The Y coupon, designed to be incorporated into production boards for statistical process control. From IPC-SM-840. [Pg.1357]

Specifications, Standards, Quality Control, and Health and Safety Factors. Formerly, there was an Insulation Board Institute representing the insulation board industry, but the decline in the market and number of producers has led to its demise. Currently (ca 1997), the industry is represented by the American Hardboard Association (AHA). Specifications and standards are found in American National Standards Institute (ANSI) standard for CellulosicFiberboard (7). The standard includes descriptions of the various types and classes of ftberboard, as well as requirements for physical and dimensional stabiUty properties. QuaUty control tests are limited to a few basic strength and stabiUty tests, including bending strength, bond strength, and moisture resistance. [Pg.386]

Polyimide. Polyimide is a biaxiaHy oriented high performance film that is tough, flexible, and temperature- and combustion-resistant. Its room temperature properties compare to poly(ethylene terephthalate), but it retains these good characteristics at temperatures above 400°C. Its electrical resistance is good and it is dimensionally stable. The principal detriment is fairly high moisture absorbance. The main uses are for electrical insulation, particularly where high temperatures are prevalent or ionizing radiation is a problem. The films may be coated to reduce water absorption and enhance... [Pg.377]

Aryl Phosphates. Aryl phosphates were introduced into commercial use early in the twentieth century for flammable plastics such as cellulose nitrate and later for cellulose acetate. CeUulosics are a significant area of use but are exceeded now by plastici2ed vinyls (93—95). Principal appHcations are in wire and cable insulation, coimectors, automotive interiors, vinyl moisture barriers, plastic greenhouses (Japan), furniture upholstery, conveyer belts (especially in mining), and vinyl foams. [Pg.478]

MoistureResista.nce, Plastic foams are advantageous compared to other thermal insulations in several appHcations where they are exposed to moisture pickup, particularly when subjected to a combination of thermal and moisture gradients. In some cases the foams are exposed to freeze—thaw cycles as well. The behavior of plastic foams has been studied under laboratory conditions simulating these use conditions as well as under the actual use conditions. [Pg.415]

In a study (206) of the moisture gain of foamed plastic roof insulations under controlled thermal gradients the apparent permeabiUty values were greater than those predicted by regular wet-cup permeabiUty measurements. The moisture gains found in polyurethane are greater than those of bead polystyrene and much greater than those of extmded polystyrene. [Pg.415]

Moisture pickup and freeze—thaw resistance of various insulations and the effect of moisture on the thermal performance of these insulations has been reported (207). In protected membrane roofing appHcations the order of preference for minimizing moisture pickup is... [Pg.415]

Electrical Properties. CeUular polymers have two important electrical appHcations (22). One takes advantage of the combination of inherent toughness and moisture resistance of polymers along with the decreased dielectric constant and dissipation factor of the foamed state to use ceUular polymers as electrical-wire insulation (97). The other combines the low dissipation factor and the rigidity of plastic foams in the constmction of radar domes. Polyurethane foams have been used as high voltage electrical insulation (213). [Pg.415]

Refrigera.tion in Transportation. Styling is unimportant. The volume of insulation and a low thermal conductivity are of primary concern. Volume is not large, so appHcation methods are not of prime importance. Low moisture sensitivity and permanence are necessary. The mechanical properties of the insulant are quite important owing to the continued abuse the vehicle undergoes. Cost is of less concern here than in other appHcations. [Pg.416]

Residential Construction. Owing to rising energy costs, the cost and low thermal conductivity are of prime importance in wall and ceiling insulation of residential buildings. The combination of insulation efficiency, desirable stmctural properties, ease of appHcation, abiHty to reduce air infiltration, and moisture resistance has led to use of extmded polymeric foam in residential constmction as sheathing, as perimeter and floor insulation under concrete, and as a combined plaster base and insulation for walls. [Pg.416]

Commercial Construction. The same attributes desirable on residential constmction appHcations hold for commercial constmction as weU but insulation quaHty, permanence, moisture insensitivity, and resistance to free2e—thaw cycling in the presence of water are of greater significance. For this reason ceUular plastics have greater appHcation here. Both polystyrene and polyurethane foams are highly desirable roof insulations in commercial as in residential constmction. [Pg.416]

The polysdanes are normally electrical insulators, but on doping with AsF or SbF they exhibit electrical conductivity up to the levels of good semiconductors (qv) (98,124). Conductivities up to 0.5 (H-cm) have been measured. However, the doped polymers are sensitive to air and moisture thereby making them unattractive for practical use. In addition to semiconducting behavior, polysilanes exhibit photoconductivity and appear suitable for electrophotography (qv) (125—127). Polysdanes have also been found to exhibit nonlinear optical properties (94,128). [Pg.263]

The dielectric constant of a compound is increased by small amounts of absorbed water hence wire insulation for communications generally must have a dielectric constant as stable as possible in the presence of water or moisture. [Pg.326]

Trees originating at a shield—insulation interface are mosdy due to the existence of protmsion from the shields. They are referred to as vented trees if moisture is present, they are called vented water trees. Particulate contaminants present in the insulation, and waterborne ionizable materials that find their way into the insulation, are also causes of tree formation. [Pg.329]

Although thermal performance is a principal property of thermal insulation (13—15), suitabiHty for temperature and environmental conditions compressive, flexure, shear, and tensile strengths resistance to moisture absorption dimensional stabiHty shock and vibration resistance chemical, environmental, and erosion resistance space limitations fire resistance health effects availabiHty and ease of appHcation and economics are also considerations. [Pg.331]

Moisture. Absorbed and retained moisture, especially as ice, has a significant effect on the stmctural and thermal properties of insulation materials. Most closed-ceU plastic foams have low permeance properties most notably where natural or bonded low permeance surface skins exist (29,30). Design, building, and constmction practices requite adequate vapor retarders, skins, coatings, sealants, etc, in order to prevent the presence of moisture. However, moisture vapor cannot be completely excluded, thus the possibiUty of moisture absorption and retention is always present. The freezing of moisture and mpturing of cells result in permanent reduction of thermal and stmctural performance. [Pg.335]

Dielectric Film Deposition. Dielectric films are found in all VLSI circuits to provide insulation between conducting layers, as diffusion and ion implantation (qv) masks, for diffusion from doped oxides, to cap doped films to prevent outdiffusion, and for passivating devices as a measure of protection against external contamination, moisture, and scratches. Properties that define the nature and function of dielectric films are the dielectric constant, the process temperature, and specific fabrication characteristics such as step coverage, gap-filling capabihties, density stress, contamination, thickness uniformity, deposition rate, and moisture resistance (2). Several processes are used to deposit dielectric films including atmospheric pressure CVD (APCVD), low pressure CVD (LPCVD), or plasma-enhanced CVD (PECVD) (see Plasma technology). [Pg.347]

Asbestos-Based Grade. Grade MM is more resistant to heat than Grade C but not recommended for primary insulation at any voltage. It exhibits small dimensional changes when exposed to moisture. [Pg.536]

Cases can be classified as either hermetic or nonhermetic, based on their permeabiUty to moisture. Ceramics and metals are usually used for hermetic cases, whereas plastic materials are used for nonhermetic appHcations. Cases should have good electrical insulation properties. The coefficient of thermal expansion of a particular case should closely match those of the substrate, die, and sealing materials to avoid excessive residual stresses and fatigue damage under thermal cycling loads. Moreover, since cases must provide a path for heat dissipation, high thermal conductivity is also desirable. [Pg.530]

Conformal coatings are protective coatings appHed to circuit board assembHes. They protect the interconnect conductors, solder joints, components, and the board itself they reduce permeabiHty to moisture, hostile chemical vapors, and solvents in the coating. Use of conformal coatings eliminates dendritic growth between conductors, conductor bridging from moisture condensation, and reduction in insulation resistance by water absorption. [Pg.532]

Commonly used materials for cable insulation are poly(vinyl chloride) (PVC) compounds, polyamides, polyethylenes, polypropylenes, polyurethanes, and fluoropolymers. PVC compounds possess high dielectric and mechanical strength, flexibiUty, and resistance to flame, water, and abrasion. Polyethylene and polypropylene are used for high speed appHcations that require a low dielectric constant and low loss tangent. At low temperatures, these materials are stiff but bendable without breaking. They are also resistant to moisture, chemical attack, heat, and abrasion. Table 14 gives the mechanical and electrical properties of materials used for cable insulation. [Pg.534]

The maximum recommended film thickness is 25 p.m. At greater thicknesses, volatiles from the curing reaction, mainly water and some formaldehyde and phenol, can cause defects. These coatings have excellent electrical insulation properties, ie, up to 20 V/p.m, because of low moisture absorption and low conductance. The coatings are hard with low flexibiUty, depending on curing conditions and film thickness. [Pg.303]


See other pages where Moisture insulators is mentioned: [Pg.47]    [Pg.51]    [Pg.47]    [Pg.51]    [Pg.442]    [Pg.168]    [Pg.397]    [Pg.34]    [Pg.48]    [Pg.363]    [Pg.373]    [Pg.415]    [Pg.416]    [Pg.416]    [Pg.299]    [Pg.72]    [Pg.148]    [Pg.204]    [Pg.536]    [Pg.266]    [Pg.52]    [Pg.172]    [Pg.372]    [Pg.532]    [Pg.532]    [Pg.304]    [Pg.152]    [Pg.155]    [Pg.255]   
See also in sourсe #XX -- [ Pg.368 ]




SEARCH



Moisture insulation

Moisture insulation

© 2024 chempedia.info