Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Moisture content process

Moisture content Process control As indicated in the quality plan... [Pg.432]

A measurement of particle moisture content will normally be taken at the exit of the dryer. This allows the process operators to make such adjustments as may be needed to maintain moisture within the desired range. Various instmments are used, none of which are entirely satisfactory, and periodic hand samples are used in some mills. Considering the importance of moisture sensing and control at the dryers, it is unfortunate that a truly efficient, consistent, and accurate sensing system is not yet available to the industry. The primary reasons for the difficulty of measuring moisture at the dryer exit are the extreme and adverse conditions of heat, dust, and moisture present at this location. [Pg.391]

The precipitated cellulose acetate is filtered from the dilute (25—36%) acetic acid. The acetic acid and salts remaining from the sulfuric acid neutrali2ation are removed by washing. The wet polymer is typically dried to a moisture content of 1—5%. The dilute acetic acid obtained from the washing and precipitation steps caimot be used in other stages of the process. Its efficient recovery and recycle are an economic necessity. [Pg.296]

Mechanical Squeezing of Cakes. Mechanical squeesing of the cake in the so-called variable chamber filters has been used relatively recendy to lower moisture content of the final cake. This is appHcable only to cakes that are compressible. Many filters are available in which some form of mechanical expression of the cake is used either to foUow a conventional filtration process or to replace it. [Pg.390]

In apphcations where the fraction of fine particles in the soHds of the feed slurry is low, a simple and relatively cheap vacuum filter can yield cakes with moisture contents comparable to those discharged by pressure filters. Vacuum filters include the only truly continuous filters built in large sizes that can provide for washing, drying, and other process requirements. [Pg.394]

The KDF filter was first tested in prototype on a coal mine in northern Germany. It was installed in parallel with existing vacuum filters and it produced filter cakes consistendy lower in moisture content by 5 to 7% than the vacuum filters. Two production models have been installed and operated on a coal mine in Belgium. The filter is controlled by a specially developed computer system this consists of two computers, one monitoring the function of the filter and all of the detection devices installed, and the other controlling the filtration process. The system allows optimization of the performance, automatic start-up or shut-down, and can be integrated into the control system of the whole coal washing plant. [Pg.406]

A more complex flavor development occurs in the production of chocolate. The chocolate beans are first fermented to develop fewer complex flavor precursors upon roasting, these give the chocolate aroma. The beans from unfermented cocoa do not develop the chocolate notes (84—88) (see Chocolate and cocoa). The flavor development process with vanilla beans also allows for the formation of flavor precursors. The green vanilla beans, which have Htfle aroma or flavor, are scalded, removed, and allowed to perspire, which lowers the moisture content and retards the enzymatic activity. This process results in the formation of the vanilla aroma and flavor, and the dark-colored beans that after drying are the product of commerce. [Pg.18]

There are many interacting parameters and possible feedstock—process—product combinations, but all are not feasible from a practical standpoint eg, the separation of small amounts of metals present in biomass and the direct combustion of high moisture content algae are technically possible, but energetically unfavorable. [Pg.15]

It is useful to examine the combustion process appHed to soHd wastes as fuels and sources of energy. AH soHd wastes are quite variable in composition, moisture content, and heating value. Consequendy, they typically are burned in systems such as grate-fired furnaces or duidized-bed boilers where significant fuel variabiUty can be tolerated. [Pg.56]

Value assumed from Fischer assay and moisture content. The addition of steam to the process prevented accurate measurement of water produced in retorting. [Pg.95]

Volatilization. The susceptibility of a herbicide to loss through volatilization has received much attention, due in part to the realization that herbicides in the vapor phase may be transported large distances from the point of application. Volatilization losses can be as high as 80—90% of the total applied herbicide within several days of application. The processes that control the amount of herbicide volatilized are the evaporation of the herbicide from the solution or soHd phase into the air, and dispersal and dilution of the resulting vapor into the atmosphere (250). These processes are influenced by many factors including herbicide application rate, wind velocity, temperature, soil moisture content, and the compound s sorption to soil organic and mineral surfaces. Properties of the herbicide that influence volatility include vapor pressure, water solubility, and chemical stmcture (251). [Pg.48]

The products of reaction are pumped to a filter press for separation into a sodium sulfate solution and a filter cake having a low moisture content. The filter cake is then ready to be processed for the recovery of lead. The filtrate from the process contains an excess of sodium carbonate, and can be neutralized using the sulfuric acid drained from the batteries. [Pg.49]

Commercial cmde lecithin is a brown to light yeUow fatty substance with a Hquid to plastic consistency. Its density is 0.97 g/mL (Uquid) and 0.5 g/mL (granule). The color is dependent on its origin, process conditions, and whether it is unbleached, bleached, or filtered. Its consistency is deterrnined chiefly by its oil, free fatty acid, and moisture content. Properly refined lecithin has practically no odor and has a bland taste. It is soluble in aflphatic and aromatic hydrocarbons, including the halogenated hydrocarbons however, it is only partially soluble in aflphatic alcohols (Table 5). Pure phosphatidylcholine is soluble in ethanol. [Pg.98]

Operating parameters of this German plant, on the basis of one cubic meter of raw gas, iaclude 0.139 m O2, 0.9 kg briquettes, 1.15 kg steam, 1.10 kg feed water, 0.016 kWh, and 1.30 kg gas Hquor produced. Gasifier output is 1850 m /h and gas yield is 1465 m /t dry, ash-free coal. The coal briquettes have a 19% moisture content, 7.8% ash content (dry basis), and ash melting poiat of 1270°C. Thermal efficiency of the gas production process is about 60%, limited by the quaHty and ash melting characteristics of the coal. Overall efficiency from raw coal to finished products is less than 50%. [Pg.159]

A wide variety of capsules loaded with water-immiscible or water-iasoluble materials have been prepared by complex coacervation. Capsule size typically ranges from 20—1000 p.m, but capsules outside this range can be prepared. Core contents usually are 80—95 wt %. Complex coacervation processes are adversely affected by active agents that have finite water solubiUty, are surface-active, or are unstable at pH values of 4.0—5.0. The shell of dry complex coacervate capsules is sensitive to variations ia atmospheric moisture content and becomes plasticized at elevated humidities. [Pg.319]

Large quantities of evaporated milk are used to manufacture ice cream, bakery products, and confectionery products (see Bakery processes and LEAVENING agents). When used for manufacturing other foods, evaporated milk is not sterilized, but placed in bulk containers, refrigerated, and used fresh. This product is caHed condensed milk. Skimmed milk may be used as a feedstock to produce evaporated skimmed milk. The moisture content of other Hquid milk products can be reduced by evaporation to produce condensed whey, condensed buttermilk, and concentrated sour milk. [Pg.365]

A process has been developed (139) whereby up to 80% of the oil can be removed from whole, raw peanuts without the use of solvent. In this process, the blanched peanuts are brought to a proper moisture content, pressed mechanically, and then reshaped or reconstituted by dipping in hot water subsequently they can be roasted and salted, or used in confections or other formulations. Defatted peanuts may also be ground into meal and added to cookies, cakes, and many other products, where they impart a distinctly nutty flavor and cmnchy texture. On the other hand, the resulting high grade oil is refined and employed in cooking and industrial products. This process can also be used for pecans, walnuts, almonds, Brazil nuts, cashews, and other nuts (140-142). [Pg.278]

Sheet Drying. At a water content of ca 1.2—1.9 parts of water per part of fiber, additional water removal by mechanical means is not feasible and evaporative drying must be employed. This is at best an efficient but cosdy process and often is the production botdeneck of papermaking. The dryer section most commonly consists of a series of steam-heated cylinders. Alternate sides of the wet paper are exposed to the hot surface as the sheet passes from cylinder to cylinder. In most cases, except for heavy board, the sheet is held closely against the surface of the dryers by fabrics of carefuUy controUed permeabiHty to steam and air. Heat is transferred from the hot cylinder to the wet sheet, and water evaporates. The water vapor is removed by way of elaborate air systems. Most dryer sections are covered with hoods for coUection and handling of the air, and heat recovery is practiced in cold climates. The final moisture content of the dry sheet usually is 4—10 wt %. [Pg.8]


See other pages where Moisture content process is mentioned: [Pg.331]    [Pg.333]    [Pg.355]    [Pg.383]    [Pg.389]    [Pg.389]    [Pg.392]    [Pg.205]    [Pg.362]    [Pg.363]    [Pg.6]    [Pg.229]    [Pg.230]    [Pg.277]    [Pg.393]    [Pg.459]    [Pg.471]    [Pg.15]    [Pg.23]    [Pg.171]    [Pg.207]    [Pg.53]    [Pg.155]    [Pg.479]    [Pg.480]    [Pg.366]    [Pg.12]    [Pg.343]    [Pg.226]    [Pg.270]    [Pg.272]    [Pg.296]    [Pg.305]   


SEARCH



Residual moisture content during process

© 2024 chempedia.info