Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methylene chloride group

The protecting groups are also used to solubilize synthetic intermediates in organic solvents, e.g. methylene chloride. Chromatography is then possible on a larger scale, since silica gel can be used as adsorbent. Six synthetic strategies have been developed (H. Kdster, 1979) ... [Pg.216]

Pew data are available on the amounts of finish remover production except for methylene chloride removers. Methylene chloride consumption by finish removal groups is estimated in Table 1. [Pg.553]

Table 1. Consumption of Methylene Chloride by Finish Removal Groups ... Table 1. Consumption of Methylene Chloride by Finish Removal Groups ...
Phosgene addition is continued until all the phenoHc groups are converted to carbonate functionahties. Some hydrolysis of phosgene to sodium carbonate occurs incidentally. When the reaction is complete, the methylene chloride solution of polymer is washed first with acid to remove residual base and amine, then with water. To complete the process, the aqueous sodium chloride stream can be reclaimed in a chlor-alkah plant, ultimately regenerating phosgene. Many variations of this polycarbonate process have been patented, including use of many different types of catalysts, continuous or semicontinuous processes, methods which rely on formation of bischloroformate oligomers followed by polycondensation, etc. [Pg.283]

The relative contributions from these processes strongly depend on the reaction conditions, such as type of solvent, substrate and water concentration, and acidity of catalyst (78,79). It was also discovered that in acid—base inert solvents, such as methylene chloride, the basic assistance requited for the condensation process is provided by another silanol group. This phenomena, called intra—inter catalysis, controls the linear-to-cyclic products ratio, which is constant at a wide range of substrate concentrations. [Pg.46]

Chloroform can be manufactured from a number of starting materials. Methane, methyl chloride, or methylene chloride can be further chlorinated to chloroform, or carbon tetrachloride can be reduced, ie, hydrodechlorinated, to chloroform. Methane can be oxychlorinated with HCl and oxygen to form a mixture of chlorinated methanes. Many compounds containing either the acetyl (CH CO) or CH2CH(OH) group yield chloroform on reaction with chlorine and alkali or hypochlorite. Methyl chloride chlorination is now the most common commercial method of producing chloroform. Many years ago chloroform was almost exclusively produced from acetone or ethyl alcohol by reaction with chlorine and alkali. [Pg.525]

Organic Halides. Alkyl halides and aiyl halides, activated by election withdrawing groups (such as NO2) in the ortho or para positions, react with alkyleneamines to form mono- or disubstituted derivatives. Product distribution is controlled by reactant ratio, metal complexation or choice of solvent (16,17). Mixing methylene chloride [75-09-2J and EDA reportedly causes a mnaway reaction (18). [Pg.42]

The terminal R groups can be aromatic or aliphatic. Typically, they are derivatives of monohydric phenoHc compounds including phenol and alkylated phenols, eg, /-butylphenol. In iaterfacial polymerization, bisphenol A and a monofunctional terminator are dissolved in aqueous caustic. Methylene chloride containing a phase-transfer catalyst is added. The two-phase system is stirred and phosgene is added. The bisphenol A salt reacts with the phosgene at the interface of the two solutions and the polymer "grows" into the methylene chloride. The sodium chloride by-product enters the aqueous phase. Chain length is controlled by the amount of monohydric terminator. The methylene chloride—polymer solution is separated from the aqueous brine-laden by-products. The facile separation of a pure polymer solution is the key to the interfacial process. The methylene chloride solvent is removed, and the polymer is isolated in the form of pellets, powder, or slurries. [Pg.270]

R F Handmade Paints Inc., 245 R.S.A. Coi"poration, 246 RAG Group AG, 165 RAIMONT , phosphoric acid, 114 Raisio Chemicals Ltd., 156 Rajsliree Agro Chem, 174 Rallis hidia Ltd., 175 RAMROD , propachlor, 114 RANEY , catalysts, 114 RAPICHLENE , methylene chloride, 114 Rasa Industries Ltd., 187 Raschig GmbH, 165... [Pg.345]

The salts of 3-acetyl-18/3-glycyrrhetinic acid can be prepared by reaction between 3-acetyl-18/3-glycyrrhetinic acid and an aluminum alcohoiate. Preferably lower alcoholates are used, i.e., alcoholates in which the alkoxy group or groups have from one to four carbon atoms. The salification reaction may be carried out at room temperature or at an elevated temperature in conventional fashion, preferably in the presence of organic solvents. As organic solvents may be used alcohols, ethers, ketones, chlorinated solvents (methylene chloride, chloroform) ethyl acetate, etc. [Pg.19]

A solution of N-(2-aminobenzvl)-1-phenyl-2-metKylaminoethanol-1 was prepared by the reaction of a-bromo-acetophenone and (2-nitrobenzyl)methylamine, followed by hydrogenation of the nitro group by means of nickei on diatomaceous earth at room temperature and reduction of the CO group by means of sodium borohydride. The intermediate thus produced was dissolved in 100 ml of methylene chloride and introduced dropwise into 125 ml of sulfuric acid at 10° to 15°C. After a short standing, the reaction mixture was poured onto ice and rendered alkaline by means of a sodium hydroxide solution. Dy extraction with ether, there was obtained 1,2,3,4-tetrahydro-2-methyl-4-phenyl-8-amino-iso-quinoline. The base is reacted with maleic acid to give the maleate melting point of the maleate 199° to 201°C (from ethanol). [Pg.1091]

Between 4 and 5 Appear to classify as somewhat less toxic than Group 4. Much less toxic than Group 4 but somewhat more toxic than Group 5. Methylene chloride Ethyl chloride Refrigerant 113... [Pg.320]

You will note that the oxygen atoms attached to carbons 5 and 12 in 43 reside in proximity to the C-9 ketone carbonyl. Under sufficiently acidic conditions, it is conceivable that removal of the triethylsilyl protecting groups would be attended by a thermodynamically controlled spiroketalization reaction.30 Indeed, after hydro-genolysis of the C-26 benzyl ether in 43, subjection of the organic residue to the action of para-toluenesulfonic acid in a mixture of methylene chloride, ether, and water accomplishes the desired processes outlined above and provides monensin methyl ester. Finally, saponification of the methyl ester with aqueous sodium hydroxide in methanol furnishes the sodium salt of (+)-monensin [(+)-1], Still s elegant synthesis of monensin is now complete.13... [Pg.246]

When a solution of 25 in a 1 1 mixture of methanol and methylene chloride is exposed to periodic acid, the dithiane group is cleaved oxidatively to give, after treatment of the crude product with camphorsulfonic acid (CSA) in methanol, bisacetal 12 as a 2 1 mixture of C-12 anomers in a yield of 80% (Scheme 3). Although the conversion of 12 into 10 could be carried out on the mixture of anomers, it was found to be more convenient to carry each isomer forward separately. When 12 is treated with lithium diethylamide, the methine hydrogen adjacent to the lactone carbonyl is removed as a proton to give an enolate which is then oxidized in a completely diastereoselective fashion with Davis s oxaziridine18 to afford 11. [Pg.459]

The hydroxylation reaction, whose stereochemical course is controlled by the strong inherent preference for the formation of a cis-fused 5,5 ring system, creates a molecule which would appear to be well suited for an intramolecular etherification reaction to give ring E of ginkgolide B (1). Indeed, when a solution of 11 in methylene chloride is exposed to camphorsulfonic acid (CSA), a smooth cycli-zation reaction takes place to give intermediate 10 in an overall yield of 75% from 12. The action of CSA on 11 produces a transient oxonium ion at C-12 which is intercepted intramolecularly by the proximal hydroxyl group at C 4. [Pg.461]

The next major obstacle is the successful deprotection of the fully protected palytoxin carboxylic acid. With 42 protected functional groups and eight different protecting devices, this task is by no means trivial. After much experimentation, the following sequence and conditions proved successful in liberating palytoxin carboxylic acid 32 from its progenitor 31 (see Scheme 10) (a) treatment with excess 2,3-dichloro-5,6-dicyano-l,4-benzoquinone (DDQ) in ie/t-butanol/methylene chloride/phosphate buffer pH 7.0 (1 8 1) under sonication conditions, followed by peracetylation (for convenience of isolation) (b) exposure to perchloric acid in aqueous tetrahydrofuran for eight days (c) reaction with dilute lithium hydroxide in H20-MeOH-THF (1 2 8) (d) treatment with tetra-n-butylammonium fluoride (TBAF) in tetrahydrofuran first, and then in THF-DMF and (e) exposure to dilute acetic acid in water (1 350) at 22 °C. The overall yield for the deprotection sequence (31 —>32) is ca. 35 %. [Pg.725]

Fluorination. Attention has been focused on the direct fluorination of isoquinolines activated by conversion into 2-methylisocarbostyril (80). With gaseous fluorine (diluted to 10% with argon) in acetic acid a 54% yield of the 4-fluoro derivative was obtained. (Scheme 40). With methylene chloride as the solvent, only the 4-chloro analogue was formed [82H( 17)429]. Fluoroisoquinolines have also been made by displacement of nitro groups, and from diazonium fluoroborates (87JHC181). Hepta-chloroisoquinoline was converted into a perfluoro derivative by heating it in an autoclave with anhydrous potassium fluoride [66JCS(C)2328]. [Pg.298]

Isolation of Citronellal and Citral. At the close of each experiment (7 to 10 days), the nests were frozen intact. Groups of 200 workers were placed in a micro-Soxhlet apparatus and extracted for 8 hours with methylene chloride. A few milligrams of carrier citronellal and citral were added and the mixture was applied to a thin-layer chromatoplate (silica gel G) which was developed with hexane-ethyl acetate (92 to 8) to separate citronellal and citral (3). The aldehydes were detected by spraying with a solution of 2, 4-dini-trophenylhydrazine in tetrahydrofuran (20) and the citronellal and citral peaks were scraped off and allowed to react with excess dinitro-phenylhydrazine reagent for a further 12 hours. [Pg.35]


See other pages where Methylene chloride group is mentioned: [Pg.751]    [Pg.191]    [Pg.274]    [Pg.88]    [Pg.751]    [Pg.191]    [Pg.274]    [Pg.88]    [Pg.259]    [Pg.219]    [Pg.235]    [Pg.362]    [Pg.552]    [Pg.280]    [Pg.49]    [Pg.113]    [Pg.219]    [Pg.170]    [Pg.170]    [Pg.171]    [Pg.184]    [Pg.199]    [Pg.66]    [Pg.1157]    [Pg.76]    [Pg.78]    [Pg.180]    [Pg.272]    [Pg.278]    [Pg.458]    [Pg.463]    [Pg.459]    [Pg.24]    [Pg.27]    [Pg.73]   
See also in sourсe #XX -- [ Pg.38 ]




SEARCH



Chloride group

Methylene chlorid

Methylene chloride

Methylene chloride point group

Methylene group

© 2024 chempedia.info