Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pine oil

Pine Oil. This oil is obtained by extraction and fractionation or by steam distillation of the wood of Pinuspalustris Mill, and other species. Most of the oil is produced ia the southeastern United States. The composition of the oil depends on the fractions chosen, but the chief constituents are terpene alcohols, mainly terpiaeol. Piae oil finds use as a germicide ia disiafectants and soaps as an ingredient ia iasecticides, deodorants, poHshes, sweepiag compounds, and catde sprays and as raw material for the manufacture of perfumery-grade terpiaeol [8000-41 -7], anethole [104-46-1], fenchone (137), and camphor (35). [Pg.337]

Turpentine Oil. The world s largest-volume essential oil, turpentine [8006-64-2] is produced ia many parts of the world. Various species of piaes and balsamiferous woods are used, and several different methods are appHed to obtain the oils. Types of turpentines include dry-distiUed wood turpentine from dry distillation of the chopped woods and roots of pines steam-distilled wood turpentine which is steam-distilled from pine wood or from solvent extracts of the wood and sulfate turpentine, which is a by-product of the production of sulfate ceUulose. From a perfumery standpoint, steam-distilled wood turpentine is the only important turpentine oil. It is rectified to yield pine oil, yellow or white as well as wood spirits of turpentine. Steam-distilled turpentine oil is a water-white mobile Hquid with a refreshing warm-balsamic odor. American turpentine oil contains 25—35% P-pinene (22) and about 50% a-pinene (44). European and East Indian turpentines are rich in a-pinene (44) withHtfle P-pinene (22), and thus are exceUent raw materials... [Pg.339]

Uses ndReactions. a-Pinene (8) is useful for synthesizing a wide variety of terpenoids. Hydration to pine oil, acid-catalyzed isomerization to camphene, thermal isomerization to ocimene and aHoocimene, and polymerization to terpene resins are some of its direct uses. Manufacture of linalool, nerol, and geraniol has become an economically important use of a-pinene. [Pg.411]

Synthetic pine oil is produced by the acid-catalyzed hydration of a-pinene (Fig. 1). Mineral acids, usually phosphoric acid, are used in concentrations of 20—40 wt % and at temperatures varying from 30—100°C. Depending on the conditions used, alcohols, chiefly a-terpineol (9), are produced along with /)-menthadienes and cineoles, mainly limonene, terpinolene, and 1,4- and 1,8-cineole (46—48). Various grades of pine oil can be produced by fractionation of the cmde products. Formation of terpin hydrate (10) from a-terpineol gives P-terpineol (11) and y-terpineol (12) as a consequence of the reversible... [Pg.411]

Mineral acids are used as catalysts, usually in a concentration of 20— 40 wt % and temperatures of 30—60°C. An efficient surfactant, preferably one that is soluble in the acid-phase upon completion of the reaction, is needed to emulsify the a-pinene and acid. The surfactant can then be recycled with the acid. Phosphoric acid is the acid commonly used in the pine oil process. Its mild corrosion characteristics and its moderate strength make it more manageable, especially because the acid concentration is constandy changing in the process by the consumption of water. Phosphoric acid is also mild enough to prevent any significant dehydration of the alcohols formed in the process. Optimization of a process usually involves considerations of acid type and concentration, temperature, surfactant type and amount, and reaction time. The optimum process usually gives a maximum of alcohols with the minimum amount of hydrocarbons and cineoles. [Pg.420]

Many commercial grades of pine oil are available and are specified by physical properties and total alcohol content. Some commercial pine oils and the typical physical properties are Hsted in Table 4. Other grades of pine oil may constitute a blend of synthetic and natural pine oil and give the product a different odor characteristic. The odor difference is caused by the presence of phenoHc ethers anethole and methyl chavicol. [Pg.420]

Pine oils can be fractionally distilled to produce a higher a-terpineol product, but usually contain bomeol and y-terpineol, along with small amounts of other components. High grade perfumery a-terpineol can be made by the partial dehydration ofyvmenthane-l,8-diol (terpin hydrate) under mildly acidic conditions (117,118). [Pg.420]

A rather impressive Hst of materials and products are made from renewable resources. For example, per capita consumption of wood is twice that of all metals combined. The ceUulosic fibers, rayon and cellulose acetate, are among the oldest and stiU relatively popular textile fibers and plastics. Soy and other oilseeds, including the cereals, are refined into important commodities such as starch, protein, oil, and their derivatives. The naval stores, turpentine, pine oil, and resin, are stiU important although their sources are changing from the traditional gum and pine stumps to tall oil recovered from pulping. [Pg.450]

The pH of the pulp to the flotation cells is carefliUy controlled by the addition of lime, which optimizes the action of all reagents and is used to depress pyrite. A frother, such as pine oil or a long-chain alcohol, is added to produce the froth, an important part of the flotation process. The ore minerals, coated with an oily collected layer, are hydrophobic and collect on the air bubbles the desired minerals float while the gangue sinks. Typical collectors are xanthates, dithiophosphates, or xanthate derivatives, whereas typical depressants are calcium or sodium cyanide [143-33-9] NaCN, andlime. [Pg.197]

Menhaden oil Neatsfoot oil Oleic acid Oleo oil Olive oil Palm oil Peanut oil Perilla oil Pine oil Rape seed oil Rosin oil Soya bean oil Sperm oil Tallow Tallow oil Tung oil Turpentine Whale oil... [Pg.187]

Cod liver oil Linseed oil Menhaden oil Perilla oil Corn oil Cottonseed oil Olive oil Pine oil Red oil Soya bean oil Tung oil Whale oil Castor oil Lard oil... [Pg.188]

Sylvestrene is a well-recognised terpene, which is found in various turpentine and pine oils, but only in its dextro-rotatory form. Carvestrene is merely the optically inactive variety of sylvestrene, and is another instance of unfortunate nomenclature it should be properly called t-sylvestrene. [Pg.65]

Kien-ol, n. pine oil, oil of turpentine, -pech, n. pine pitch, -russ, m. pine soot (form of lampblack). -stock, m. Metal.) carcass, -teer, m. pine tar. [Pg.243]


See other pages where Pine oil is mentioned: [Pg.478]    [Pg.130]    [Pg.55]    [Pg.765]    [Pg.765]    [Pg.765]    [Pg.969]    [Pg.232]    [Pg.51]    [Pg.297]    [Pg.319]    [Pg.553]    [Pg.296]    [Pg.276]    [Pg.412]    [Pg.419]    [Pg.420]    [Pg.157]    [Pg.125]    [Pg.216]    [Pg.1809]    [Pg.83]    [Pg.63]    [Pg.439]    [Pg.270]    [Pg.240]    [Pg.124]    [Pg.348]    [Pg.130]    [Pg.16]    [Pg.16]    [Pg.17]    [Pg.54]    [Pg.80]    [Pg.131]    [Pg.251]    [Pg.490]    [Pg.928]   
See also in sourсe #XX -- [ Pg.69 , Pg.348 ]

See also in sourсe #XX -- [ Pg.160 , Pg.192 ]




SEARCH



Pines

Pining

© 2024 chempedia.info