Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methyl cyclohexyl sulfone

Organic fluorine compounds and methods for their preparation are the central topic of the next four procedures. Much of the synthetic versatility of methyl phenyl sulfone is embodied in FLUOROMETHYL PHENYL SULFONE and the fluoro Pummerer reaction of methyl phenyl sulfoxide with DAST is a key step in its preparation. The utility of this fluoromethyl sulfone in the preparation of fluoroalkenes Is demonstrated in a companion procedure for Z-[2-(FLUOROMETHYLENE) CYCLOHEXYL]BENZENE, a procedure with several prominent stereoselective features. Geminal difluoroalkenes are featured in the following procedure. (3,3 DIFLUOROALLYL)TRIMETHYLSILANE is prepared by a method in which the radical addition of dibromodifluoromethane to alkenes and the selective reduction of a-bromoalkylsilanes are key steps. A procedure for nucleophilic introduction of the trifluoromethyl group completes this set. The key reagent, (TRIFLUOROMETHYL)-TRIMETHYLSILANE is obtained by reductive coupling of TMS chloride and bromotrifluoromethane. Liberation of a CF3- equivalent with fluoride ion in the presence of cyclohexanone affords 1-TRIFLUOROMETHYL-1-CYCLOHEXANOL. [Pg.290]

Ethylene dioxythiophene monomer, emulsion polymerization PEG-5 methacrylate Sodium allyloxy hydroxypropyl sulfonate monomer, EPDM elastomers Ethylidene-2-norbornene monomer, epoxy coatings Bis [f[4-(ethenyloxy) methyl] cyclohexyl] methyl] terephthalate Bis (4-vinyl oxy butyl) hexanediyibiscarbamate monomer, EVA copolymers Vinyl acetate... [Pg.5476]

PB PBI PBMA PBO PBT(H) PBTP PC PCHMA PCTFE PDAP PDMS PE PEHD PELD PEMD PEC PEEK PEG PEI PEK PEN PEO PES PET PF PI PIB PMA PMMA PMI PMP POB POM PP PPE PPP PPPE PPQ PPS PPSU PS PSU PTFE PTMT PU PUR Poly(n.butylene) Poly(benzimidazole) Poly(n.butyl methacrylate) Poly(benzoxazole) Poly(benzthiazole) Poly(butylene glycol terephthalate) Polycarbonate Poly(cyclohexyl methacrylate) Poly(chloro-trifluoro ethylene) Poly(diallyl phthalate) Poly(dimethyl siloxane) Polyethylene High density polyethylene Low density polyethylene Medium density polyethylene Chlorinated polyethylene Poly-ether-ether ketone poly(ethylene glycol) Poly-ether-imide Poly-ether ketone Poly(ethylene-2,6-naphthalene dicarboxylate) Poly(ethylene oxide) Poly-ether sulfone Poly(ethylene terephthalate) Phenol formaldehyde resin Polyimide Polyisobutylene Poly(methyl acrylate) Poly(methyl methacrylate) Poly(methacryl imide) Poly(methylpentene) Poly(hydroxy-benzoate) Polyoxymethylene = polyacetal = polyformaldehyde Polypropylene Poly (2,6-dimethyl-l,4-phenylene ether) = Poly(phenylene oxide) Polyp araphenylene Poly(2,6-diphenyl-l,4-phenylene ether) Poly(phenyl quinoxaline) Polyphenylene sulfide, polysulfide Polyphenylene sulfone Polystyrene Polysulfone Poly(tetrafluoroethylene) Poly(tetramethylene terephthalate) Polyurethane Polyurethane rubber... [Pg.939]

PS is miscible with several polymers, viz. polyphenyleneether (PPE), polyvinylmethylether (PVME), poly-2-chlorostyrene (PCS), polymethylstyrene (PMS), polycarbonate of tetramethyl bisphenol-A (TMPC), co-polycarbonate of bisphenol-A and tetramethyl bisphenol-A, polycyclohexyl acrylate (PCHA), polyethylmethacrylate (PEMA), poly-n-propyl methacrylate (PPMA), polycyclohexyl methacrylate (PCHMA), copolymers of cyclohexyl methacrylate and methyl methacrylate, bromobenzylated- or sulfonated-PPE, etc. Other miscible blends are listed in Appendix 2. [Pg.24]

Amitraz Azamethiphos Azinphos-ethyl Azinphos-methyl Azoxybenzene Bifenthrin 2-(p-t-Butylphenoxy) cyclohexyl propargyl sulfite Calcium polysulfide Calcium sulfide Carbofuran Chinomethionat Chlorfenvinphos Chlorpyrifos-methyl Diazinon Dichlorvos Dicofol Dienochlor Dimethoate 4,6-Dinitro-o-cresol Diphenyl sulfone Disulfoton Endosulfan Etrimfos Fenpropathrin Fenthion Flubenzimine lodofenphos Kepone Malathion Mecarbam... [Pg.4782]

A new facile method for the rapid synthesis of aliphatic polyamides and polyimides was developed by using a domestic microwave oven to facilitate the polycondensation of both w-amino acids and nylon salts as well as of the salt monomers composed of aliphatic diamines and pyromellitic acid or its diethyl ester in the presence of a small amount of a polar organic medium. Suitable organic media for the polyamide synthesis were tetramethylene sulfone, amide-type solvents such as A -cyclohexyl-2-pyrrolidone (CHP) and 13-dimethyl-2-imidazolidone (DMI), and phenolic solvents like m-cresol and c)-chlorophenol, and for the polyimide synthesis amide-type solvents such as A-methyl-2-pyrrolidone, CHP, and DMI. In the case of the polyamide synthesis, the polycondensation was almost complete within 5 min, producing a series of polyamides with inherent viscosities around 0.5 dL/g, whereas the polyimides having the viscosity values above 0.5 dL/g were obtained quite rapidly by the microwave-assisted polycondensation for only 2 min. [Pg.421]


See other pages where Methyl cyclohexyl sulfone is mentioned: [Pg.159]    [Pg.159]    [Pg.37]    [Pg.189]    [Pg.133]    [Pg.326]    [Pg.194]    [Pg.87]    [Pg.120]    [Pg.1019]    [Pg.559]    [Pg.497]    [Pg.229]    [Pg.284]    [Pg.428]    [Pg.431]    [Pg.943]    [Pg.943]    [Pg.426]    [Pg.156]    [Pg.157]    [Pg.461]   
See also in sourсe #XX -- [ Pg.4 ]




SEARCH



5-Methyl-2- cyclohexyl

Cyclohexyl

Cyclohexylation

Methyl sulfone

© 2024 chempedia.info