Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methyl, alcohol ether

This formula was confirmed hy Haworth and Perkin s synthesis of a-flZZocryptopine from herherine, the first application of a process, of which examples have heen given already in the syntheses of cryptopine (p. 298) and protopine (p. 301) hy the same authors. Anhydrotetrahydromethyl-herherine (I cf. hase (a), p. 346) in dry chloroform was added to a solution of perhenzoic acid in ether cooled helow 5°. The amine oxide, C21H23O5N (II), separated as an oil, which after shaking with sodium hydroxide solution, solidified and was crystallised from water in slender prisms, m.p. 135°. It was dissolved in acetic acid, hydrochloric acid added, the mixture heated in boiling water for an hour and the hase precipitated hy addition of potassium hydroxide. The precipitate was dissolved in methyl alcohol, ether added, the alcohol washed out with water and the ethereal... [Pg.302]

The choice of the right solvent is therefore of great importance for the process of recrystallisation. The most commonly used solvents are the following water, ethyl alcohol, methyl alcohol, ether, acetone, glacial acetic acid, ethyl acetate, benzene, petrol ether, chloroform, carbon bisulphide. [Pg.5]

The solvents most commonly employed are water, ethyl and methyl alcohol, ether, benzene, petroleum ether, acetone, glacial acetic acid also two or three solvents may be mixed to get the desired effect as described later. If you still cannot dissolve the compound, try some of these chloroform, carbon disulfide, carbon tetrachloride, ethyl acetate, pyridine, hydrochloric acid, sulfuric acid (acids are usually diluted first), nitrobenzene, aniline, phenol, dioxan, ethylene dichloride, di, tri, tetrachloroethylene, tetrachloroethane, dichloroethyl ether, cyclohexane, cyclohexanol, tetralin, decalin, triacetin, ethylene glycol and its esters and ethers, butyl alcohol, diacetone alcohol, ethyl lactate, isopropyl ether, etc. [Pg.10]

The body is insoluble in water, sparingly soluble in cold methyl alcohol, ether, acetone, chloroform, acetic acid, acetic anhydride or carbon tetrachloride, but more soluble on heating it readily sublimes, and has a faint agreeable odour. When boiled with iodine in chloroform solution it forms a tetra-iodide,... [Pg.121]

About 14 g of choline chloride are stirred with a solution of about 20 g of phosgene in 100 g of chloroform for about two hours at room temperature. The mixture becomes a two-phase liquid mixture. Hydrochloric acid and excess phosgene are removed by distillation in vacuo. Chloroform is added to the syrup, and the mixture is then added to a solution of excess ammonia in chloroform which was cooled with solid carbon dioxide-acetone. The mixture is filtered, and the solid is extracted with hot absolute alcohol. The solid in the alcoholic solution is precipitated with ether, and filtered. It is recrystallized from a methyl alcohol-ether mixture the carbaminoyl-choline chloride obtained has a melting point of about 208°-210°C. [Pg.819]

II), separated as an oil, which after shaking with sodium hydroxide solution, solidified and was crystallised from water in slender prisms, m.p. 185°. It was dissolved in acetic acid, hydrochloric acid added, the mixture heated in boiling water for an hour and the base precipitated by addition of potassium hydroxide. The precipitate was dissolved in methyl alcohol, ether added, the alcohol washed out with water and the ethereal... [Pg.163]

Place 0 -5 g. of 3 4 5 triiodobenzoyl chloride in a small test-tube, add 0 -25 ml. of the alcohol - ether and heat the mixture gently over a micro burner until the evolution of hydrogen chloride ceases (3-5 minutes). Pour the molten mass into 10 ml. of 20 per cent, alcohol to which crushed ice has been added. Some derivatives solidify instantly those which separate as oils change to solids in a few minutes without further manipulation. Recrystallise from rectified spirit (use 50 per cent, alcohol for esters of methyl and butyl carbitol ). [Pg.265]

The acetamide often contains a minute amount of impurity having an odour resembling mice excrement this can be removed by washing with a small volume of a 10 per cent, solution of ethyl alcohol in ether or by recrystallLsation. Dissolve 5 g. of impure acetamide in a mixture of 5 ml. of benzene and 1 5 ml. of dry ethyl acetate warm on a water bath until all is dissolved and cool rapidly in ice or cold water. Filter oflF the crystals, press between Alter paper and dry in a desiccator. The unpleasant odour is absent and the pure acetamide melts at 81°. Beautiful large crystals may be obtained by dissolving the acetamide (5 g.) in warm methyl alcohol (4 ml.), adding ether (40 ml.) and allowing to stand. [Pg.402]

The formaldehyde may be replaced by methylal CHjlOCH,), or by chloro-methyl ether CHjOCHjCl, produced from paraformaldehyde, hydrogen chloride and methyl alcohol ... [Pg.534]

Allow a mixture of 0-5 g. of the tertiary amine and 0-5 ml. of colourless methyl iodide to stand for 5 minutes. If reaction has not occurred, warm under reflux for 5 minutes on a water bath and then cool in ice water. The mixture will generally set solid if it does not, scratch the sides of the tube with a glass rod. RecrystaUise the solid product from absolute alcohol, ethyl acetate, acetone, glacial acetic acid or alcohol-ether. [Pg.660]

Benzil monohydrazone. Method 1. Boil a mixture of 26 g. of hydrazine sulphate, 55 g. of crystallised sodium acetate and 125 ml. of water for 5 minutes, cool to about 50°, and add 115 ml. of methyl alcohol. Filter off the precipitated sodium sulphate and wash with a little alcohol. Dissolve 25 g. of benzil (Section IV,126) in 40 ml. of hot methyl alcohol and add the above hydrazine solution, heated to 60°. Most of the benzil hydrazone separates immediately, but reflux for 30 minutes in order to increase the yield. Allow to cool, filter the hydrazone and wash it with a httle ether to remove the yellow colour. The yield is 25 g., m.p. 149-151° (decomp.). [Pg.856]

Methyl crotonate. Purify commercial crotonic acid by distiUing 100 g. from a 100 ml. Claisen flask attached to an air condenser use an air bath (Fig. II, 5, 3). The pure acid passes over at 180-182° and crystallises out on cooling, m.p. 72-73° the recovery is about 90 per cent. Place 75 g. of absolute methyl alcohol, 5 g. (2 -7 ml.) of concentrated sulphuric acid and 50 g. of pure crotonic acid in a 500 ml. round-bottomed flask and heat under reflux for 12 hours. Add water, separate the precipitated ester and dissolve it in ether wash with dilute sodium carbonate solution until effervescence ceases, dry with anhydrous magnesium sulphate, and remove the ether on a water bath. Distil and collect the methyl crotoiiato at 118-120° the yield is 40 g. [Pg.927]

Myristic acid from hexanoic acid and methyl hydrogen sebacate). Dissolve 23 -2 g. of redistilled hexanoic acid (re caproic acid), b.p. 204-6-205-5°/760 mm., and 21-6 g. of methyl hydrogen sebacate in 200 ml. of absolute methanol to which 0 13 g. of sodium has been added. Electrolyse at 2 0 amps., whilst maintaining the temperature between 30° and 40°, until the pH is about 8 0 (ca. 6 hours). Neutralise the contents of the electrolysis cell with a little acetic acid and distil off the methyl alcohol on a water bath. Dissolve the residue in 200 ml. of ether, wash with three 50 ml. portions of saturated sodium bicarbonate solution, once with water, dry with anhydrous magnesium sulphate, and distil with the aid of a fractionating column (see under Methyl hydrogen adipate). Collect the re-decane at 60°/10 mm. (3 0 g.), the methyl myristate at 158-160°/ 10 mm. (12 5g.) and dimethyl hexadecane-1 16-dicarboxylate at 215-230°/ 7 mm. (1 -5 g.)... [Pg.940]

A new approach we found is based on the initial bromination of methane to methyl bromide, which can be effected with good selectivity, although still in relatively low yields. Methyl bromide is easily separated from exeess methane, whieh is readily recyeled. Hydrolysis of methyl bromide to methyl alcohol and its dehydration to dimethyl ether are readily achieved. Importantly, HBr formed as by produet ean be oxidatively reeycled into bromine, making the overall proeess cat-alytie in bromine. [Pg.211]

The key step in the total synthesis of rhizobitoxine is the Pd-catalyzed exchange reaction of the methyl alkenyl ether moiety in 4 with the functionalized alcohol, although the yield is low[3]. The enol pyruvate 6 (a-ethoxyacrylic acid) is prepared by the reaction of methyl a-methoxyacrylate or a-methoxy-acrylic acid (5) with ethanol catalyzed by PdCl2(PhCN)2 at room temperature in the presence of CuCli and NaH2P04[4],... [Pg.529]

Specifications and Analytical Methods. Vinyl ethers are usually specified as 98% minimum purity, as determined by gas chromatography. The principal impurities are the parent alcohols, limited to 1.0% maximum for methyl vinyl ether and 0.5% maximum for ethyl vinyl ether. Water (by Kad-Fischer titration) ranges from 0.1% maximum for methyl vinyl ether to 0.5% maximum for ethyl vinyl ether. Acetaldehyde ranges from 0.1% maximum in ethyl vinyl ether to 0.5% maximum in butyl vinyl ether. [Pg.116]

Isobutyl alcohol [78-83-1] forms a substantial fraction of the butanols produced by higher alcohol synthesis over modified copper—zinc oxide-based catalysts. Conceivably, separation of this alcohol and dehydration affords an alternative route to isobutjiene [115-11 -7] for methyl /-butyl ether [1624-04-4] (MTBE) production. MTBE is a rapidly growing constituent of reformulated gasoline, but its growth is likely to be limited by available suppHes of isobutylene. Thus higher alcohol synthesis provides a process capable of supplying all of the raw materials required for manufacture of this key fuel oxygenate (24) (see Ethers). [Pg.165]

Capacity Limitations and Biofuels Markets. Large biofuels markets exist (130—133), eg, production of fermentation ethanol for use as a gasoline extender (see Alcohol fuels). Even with existing (1987) and planned additions to ethanol plant capacities, less than 10% of gasoline sales could be satisfied with ethanol—gasoline blends of 10 vol % ethanol the maximum volumetric displacement of gasoline possible is about 1%. The same condition apphes to methanol and alcohol derivatives, ie, methyl-/-butyl ether [1634-04-4] and ethyl-/-butyl ether. [Pg.43]

Methyl /-Butyl Ether. MTBE is produced by reaction of isobutene and methanol on acid ion-exchange resins. The supply of isobutene, obtained from hydrocarbon cracking units or by dehydration of tert-huty alcohol, is limited relative to that of methanol. The cost to produce MTBE from by-product isobutene has been estimated to be between 0.13 to 0.16/L ( 0.50—0.60/gal) (90). Direct production of isobutene by dehydrogenation of isobutane or isomerization of mixed butenes are expensive processes that have seen less commercial use in the United States. [Pg.88]

Tetrahydronaphthalene [119-64-2] (Tetralin) is a water-white Hquid that is insoluble in water, slightly soluble in methyl alcohol, and completely soluble in other monohydric alcohols, ethyl ether, and most other organic solvents. It is a powerhil solvent for oils, resins, waxes, mbber, asphalt, and aromatic hydrocarbons, eg, naphthalene and anthracene. Its high flash point and low vapor pressure make it usehil in the manufacture of paints, lacquers, and varnishes for cleaning printing ink from rollers and type in the manufacture of shoe creams and floor waxes as a solvent in the textile industry and for the removal of naphthalene deposits in gas-distribution systems (25). The commercial product typically has a tetrahydronaphthalene content of >97 wt%, with some decahydronaphthalene and naphthalene as the principal impurities. [Pg.483]

Butyl alcohol, obtained from hydration of Raffinate 1, can be dehydrated and subsequently refined to high purity, polymer-grade isobutylene (25). Alternatively, the isobutylene from alcohol dehydration can react with methanol in the presence of an acid catalyst to give methyl /-butyl ether (MTBE) gasoHne additive (see Ethers organic). [Pg.358]

The physical properties of methylene chloride are Hsted in Table 1 and the binary a2eotropes in Table 2. Methylene chloride is a volatile Hquid. Although methylene chloride is only slightly soluble in water, it is completely miscible with other grades of chlorinated solvents, diethyl ether, and ethyl alcohol. It dissolves in most other common organic solvents. Methylene chloride is also an excellent solvent for many resins, waxes, and fats, and hence is well suited to a wide variety of industrial uses. Methylene chloride alone exhibits no dash or fire point. However, as Htde as 10 vol % acetone or methyl alcohol is capable of producing a dash point. [Pg.518]


See other pages where Methyl, alcohol ether is mentioned: [Pg.232]    [Pg.242]    [Pg.38]    [Pg.74]    [Pg.52]    [Pg.232]    [Pg.232]    [Pg.232]    [Pg.242]    [Pg.38]    [Pg.74]    [Pg.52]    [Pg.232]    [Pg.232]    [Pg.259]    [Pg.420]    [Pg.485]    [Pg.54]    [Pg.291]    [Pg.432]    [Pg.442]    [Pg.610]    [Pg.611]    [Pg.946]    [Pg.1119]    [Pg.212]    [Pg.327]    [Pg.393]    [Pg.73]    [Pg.263]    [Pg.337]    [Pg.482]    [Pg.69]    [Pg.52]   
See also in sourсe #XX -- [ Pg.107 ]




SEARCH



Alcohol Methylic

Alcohols ethers

Alcohols methylation

Methyl alcohol—

© 2024 chempedia.info