Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methodological calibration

A distinction is made between technical and methodological calibration. Technical calibration is based on process technology modules (dosage unit, thermostat) and on modules of the technique of measurement (filter characteristics of photometer). Methodological calibration is employed in the analytical method. It is the aim of methodological calibration that the data obtained have narrow tolerance limits of scatter around a target value. A prerequisite for this that the technical calibration is accurate within prescribed tolerance limits. [Pg.611]

In situ control and calibration of flare and other gas metering systems is performed by gaseous tracers using the transit time method without affecting the normal production. Details about methodology are given in / /. [Pg.1054]

A solvent free, fast and environmentally friendly near infrared-based methodology was developed for the determination and quality control of 11 pesticides in commercially available formulations. This methodology was based on the direct measurement of the diffuse reflectance spectra of solid samples inside glass vials and a multivariate calibration model to determine the active principle concentration in agrochemicals. The proposed PLS model was made using 11 known commercial and 22 doped samples (11 under and 11 over dosed) for calibration and 22 different formulations as the validation set. For Buprofezin, Chlorsulfuron, Cyromazine, Daminozide, Diuron and Iprodione determination, the information in the spectral range between 1618 and 2630 nm of the reflectance spectra was employed. On the other hand, for Bensulfuron, Fenoxycarb, Metalaxyl, Procymidone and Tricyclazole determination, the first order derivative spectra in the range between 1618 and 2630 nm was used. In both cases, a linear remove correction was applied. Mean accuracy errors between 0.5 and 3.1% were obtained for the validation set. [Pg.92]

Mancozeb is a dithiocarbamate pesticide with a very low solubility in organic and inorganic solvent. In this work we have developed a solvent free, accurate and fast photoacoustic FTIR-based methodology for Mancozeb determination in commercial fungicides. The proposed procedure was based on the direct measurement of the solid samples in the middle infrared region using a photoacoustic detector. A multivariate calibration approach based on the use of partial least squares (PLS) was employed to determine the pesticide content in commercially available formulations. [Pg.93]

All packing materials produced at PSS are tested for all relevant properties. This includes physical tests (e.g., pressure stability, temperature stability, permeability, particle size distribution, porosity) as well as chromatographic tests using packed columns (plate count, resolution, peak symmetry, calibration curves). PSS uses inverse SEC methodology (26,27) to determine chromatographic-active sorbent properties such as surface area, pore volume, average pore size, and pore size distribution. Table 9.10 shows details on inverse SEC tests on PSS SDV sorbent as an example. Pig. 9.10 shows the dependence... [Pg.288]

The significance of knowing the K and a values of fully hydrolyzed PVA is that molecular weight distribution data can be directly calculated using two methodologies. The first is the Mark-Houwink method, which requires prior knowledge of K and a values for fully hydrolyzed PVA and calibration standards such as PEG, PEO, or PSC. The second method is the intrinsic viscosity method. This method utilizes a simple ratio of the concentration signal to the specific... [Pg.567]

Under many experimental conditions, the mass spectrometer functions as a mass-sensitive detector, while in others, with LC-MS using electrospray ionization being a good example, it can behave as a concentration-sensitive detector. The reasons for this behaviour are beyond the scope of this present book (interested readers should consult the text by Cole [8]) but reinforce the need to ensure that adequate calibration and standardization procedures are incorporated into any quantitative methodology to ensure the validity of any results obtained. [Pg.34]

The trade-offs between direct calibration and standard addition are treated in Ref 103. The same recovery as is found for the native analyte has to be obtained for the spiked analyte (see Section 3.2). The application of spiking to potentiometry is reviewed in Refs. 104 and 105. A worked example for the application of standard addition methodology to FIA/AAS is found in Ref 106. Reference 70 discusses the optimization of the standard addition method. [Pg.122]

Fig. 2. A systematic methodology for the calibration of activated sludge models... Fig. 2. A systematic methodology for the calibration of activated sludge models...
In the model simulations, the settling and decanting phase were characterized by a reactive point-settler model. The simulations were carried out using matlab 6.5 simulation platform. A systematic model calibration methodology as described in Fig. 2 was applied to the SBR. Fig. 3. shows the simulation results from the calibrated model. The model predicted the dynamics of the SBR with good accuracy. [Pg.167]

The key characteristic of a RM is that the properties of interest are measured and certified on the basis of accuracy. The means of attaining the true value are varied, and several different philosophies have been utilized in the quest for the best estimate of the true value. The goal of all approaches is arrival at the best possible estimate of the true value a reliable and unassailable numerical value of the concentration of the chemical constituent, under constraints of economics, state-of-the-art analytical technologies, availability of (new and old) methods, analyst competence, availability of analysts and RM end-use requirement. The basic requirement for producing reliable data is appropriate methodology, adequately calibrated and properly used. [Pg.51]

Both the Study Director and a QA agent should be present at the first application. SOPs must be followed, documentation must be correct and complete, equipment must be calibrated and its maintenance records must be documented, safety procedures must be in place, and the fine points of application methodology should be discussed with the applicator. Guidelines for applications can be found in Residue Chemistry Test Guidelines , Office of Prevention, Protection and Toxic Substances (OPPTS) 860.1500. [Pg.211]

While these models simulate the transfer of lead between many of the same physiological compartments, they use different methodologies to quantify lead exposure as well as the kinetics of lead transfer among the compartments. As described earlier, in contrast to PBPK models, classical pharmacokinetic models are calibrated to experimental data using transfer coefficients that may not have any physiological correlates. Examples of lead models that use PBPK and classical pharmacokinetic approaches are discussed in the following section, with a focus on the basis for model parameters, including age-specific blood flow rates and volumes for multiple body compartments, kinetic rate constants, tissue dosimetry,... [Pg.238]

This chapter focuses on two main subjects. It will first deal with knowledge and methodologies of good practice in the study of chemical and microbial processes in wastewater collection systems. The information on such processes is provided by investigations, measurements and analyses performed at bench, pilot and field scale. Second, it is the objective to establish the theoretical basis for determination of parameters to be used for calibration and validation of sewer process models. These main objectives of the chapter are integrated sampling, pilot-scale and field measurements and laboratory studies and analyses are needed to determine wastewater characteristics, including those kinetic and stoichiometric parameters that are used in models for simulation of the site-specific sewer processes. [Pg.171]

The COD fractions can also be determined by iterative simulation methodologies based on a model corresponding to the matrix formulation in Table 7.1 and with parameters determined from procedure number 1 (Section 7.2.1). Successful use of this methodology requires, however, not only theoretical insight into sewer processes but also experience in calibration techniques. [Pg.191]

The three described groups of methodologies are experimental ways leading to the estimation of model parameters for the description of the anaerobic processes according to the aerobic-anaerobic conceptual model (Table 6.6). The determination of the remaining kinetic and stoichiometric parameters in this model, however, requires a calibration procedure, where the results of the above three described methodologies are used. Table 6.7 shows typical values of such parameters determined by the three methodologies folio wed by a model calibration. [Pg.200]

L. K. Kostanski, D. M. Keller, and A. E. Hamielec. Size-Exclusion Chromatography A Review of Calibration Methodologies. J. Biochem. Biophys. Meth., 58(2004) 159-186. [Pg.114]


See other pages where Methodological calibration is mentioned: [Pg.28]    [Pg.27]    [Pg.28]    [Pg.27]    [Pg.446]    [Pg.2547]    [Pg.446]    [Pg.33]    [Pg.33]    [Pg.34]    [Pg.43]    [Pg.44]    [Pg.275]    [Pg.286]    [Pg.143]    [Pg.5]    [Pg.534]    [Pg.108]    [Pg.371]    [Pg.141]    [Pg.209]    [Pg.134]    [Pg.224]    [Pg.317]    [Pg.661]    [Pg.732]    [Pg.355]    [Pg.167]    [Pg.348]    [Pg.117]    [Pg.13]    [Pg.14]    [Pg.238]    [Pg.175]   
See also in sourсe #XX -- [ Pg.611 ]




SEARCH



Calibration methodology

Calibration methodology

© 2024 chempedia.info