Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metastable phase water transitions

In addition, the reversibility of phase transition in lipid-water systems has been studied [30]. It was observed that the relaxation times in the transition region and the lifetimes of the metastable phases are similar, and sometimes significantly longer than the times characteristic of the biomembrane processes. The question arises as to the physiological significance of the equilibration that occurs a long time after lipid phase transition. [Pg.60]

Herein, we expand on the discussion of our recently observed isothermal amorphous-amorphous-amorphous transition sequence. We achieved to compress LDA in an isothermal, dilatometric experiment at 125 K in a stepwise fashion via HDA to VHDA. However, we can not distinguish if this stepwise process is a kinetically controlled continuous process or if both steps are true phase transitions (of first or higher order). We want to emphasize that the main focus here is to investigate transitions between different amorphous states at elevated pressures rather than the annealing effects observed at 1 bar. The vast majority of computational studies shows qualitatively similar features in the metastable phase diagram of amorphous water (cf. e.g. Fig.l in ref. 39) at elevated pressures the thermodynamic equilibrium line between HDA and LDA can be reversibly crossed, whereas by heating at 1 bar the spinodal is irreversibly crossed. These two fundamentally different mechanisms need to be scrutinized separately. [Pg.642]

The finding that the VHDA HDA transformation is continuous [65], as opposite to the pressure-induced, apparently discontinuous LDA-HDA transformation, has implications for our understanding of the metastable phase diagram of amorphous supercooled and glassy water. It seems counterintuitive that a continuous amorphous-amorphous transition at 140K changes character into a discontinuous liquid-liquid transition when performed above Tg. On the other hand, it seems quite possible that a first-order-like amorphous-amorphous transition develops into a first-order liquid-liquid transition when performed above Tg. Since first-order... [Pg.157]

The freezing of liquid water to ice is a first-order phase transition that, according to thermodynamics, should take place at 0°C. Kinetics presents a different story, however, and metastable liquid water at temperatures as low as -30°C is well attested when the water is emulsified into small droplets purified bulk samples are readily cooled below -10°C. In a first-order transition, two steps are necessary before a new phase becomes visible nucleation and growth. In most cases, growth of crystals from the melt is rapid and the kinetic barrier to new phase formation is dominated by the first step, nucleation. [Pg.23]

The hydration equilibria and phase transformations associated with a cytotoxic drug, BBR3576, have been studied [72]. The initially hydrated form could be made to undergo a phase transition where it lost approximately half of its water content, but the hemidesolvated product could be easily rehydrated to regenerate the starting material. If however, the original sample was completely dehydrated, the substance first formed a metastable anhydrate phase that underwent an irreversible exothermic transition to a new anhydrate crystal form. The hydration of this latter anhydrate form yielded a new hydrate phase whose structure was different from that of the initial material. [Pg.272]

Structural polymorphism has been already reported as a peculiar solid-solid phase transition with a large spectral shift in the cast film of CgAzoCioN+ Br (chapter 4). The type 1 spectrum was thermally transformed to the type VI spectrum and then backed to the type I by the isothermal moisture treatment. The reversible spectral change between the type I and VI is a good experimental evidence of Okuyama s prediction on the molecular packing. Since the type VI state is assumed to be a metastable state, the isothermal phase transition to the type I state is expected to be induced by some external stimuli. Water molecules adsorbed to cast bilayer films might act as an accelerator of the phase transition. [Pg.72]

The explosive phenomena produced by contact of liquefied gases with water were studied. Chlorodifluoromethane produced explosions when the liquid-water temperature differential exceeded 92°C, and propene did so at differentials of 96-109°C. Liquid propane did, but ethylene did not, produce explosions under the conditions studied [1], The previous literature on superheated vapour explosions has been critically reviewed, and new experimental work shows the phenomenon to be more widespread than had been thought previously. The explosions may be quite violent, and mixtures of liquefied gases may produce overpressures above 7 bar [2], Alternative explanations involve detonation driven by phase changes [3,4] and do not involve chemical reactions. Explosive phase transitions from superheated liquid to vapour have also been induced in chlorodifluoromethane by 1.0 J pulsed ruby laser irradiation. Metastable superheated states (of 25°C) achieved lasted some 50 ms, the expected detonation pressure being 4-5 bar [5], See LIQUEFIED NATURAL GAS, SUPERHEATED LIQUIDS, VAPOUR EXPLOSIONS... [Pg.216]

Figure 13. Schematic phase diagram of water s metastable states. Line (1) indicates the upstroke transition LDA —>HDA —>VHDA discussed in Refs. [173, 174], Line (2) indicates the standard preparation procedure of VHDA (annealing of uHDA to 160 K at 1.1 GPa) as discussed in Ref. [152]. Line (3) indicates the reverse downstroke transition VHDA—>HDA LDA as discussed in Ref. [155]. The thick gray line marked Tx represents the crystallization temperature above which rapid crystallization is observed (adapted from Mishima [153]). The metastability fields for LDA and HDA are delineated by a sharp line, which is the possible extension of a first-order liquid-liquid transition ending in a hypothesized second critical point. The metastability fields for HDA and VHDA are delineated by a broad area, which may either become broader (according to the singularity free scenario [202, 203]) or alternatively become more narrow (in case the transition is limited by kinetics) as the temperature is increased. The question marks indicate that the extrapolation of the abrupt LDA<- HDA and the smeared HDA <-> VHDA transitions at 140 K to higher temperatures are speculative. For simplicity, we average out the hysteresis effect observed during upstroke and downstroke transitions as previously done by Mishima [153], which results in a HDA <-> VHDA transition at T=140K and P 0.70 GPa, which is 0.25 GPa broad and a LDA <-> HDA transition at T = 140 K and P 0.20 GPa, which is at most 0.01 GPa broad (i.e., discontinuous) within the experimental resolution. Figure 13. Schematic phase diagram of water s metastable states. Line (1) indicates the upstroke transition LDA —>HDA —>VHDA discussed in Refs. [173, 174], Line (2) indicates the standard preparation procedure of VHDA (annealing of uHDA to 160 K at 1.1 GPa) as discussed in Ref. [152]. Line (3) indicates the reverse downstroke transition VHDA—>HDA LDA as discussed in Ref. [155]. The thick gray line marked Tx represents the crystallization temperature above which rapid crystallization is observed (adapted from Mishima [153]). The metastability fields for LDA and HDA are delineated by a sharp line, which is the possible extension of a first-order liquid-liquid transition ending in a hypothesized second critical point. The metastability fields for HDA and VHDA are delineated by a broad area, which may either become broader (according to the singularity free scenario [202, 203]) or alternatively become more narrow (in case the transition is limited by kinetics) as the temperature is increased. The question marks indicate that the extrapolation of the abrupt LDA<- HDA and the smeared HDA <-> VHDA transitions at 140 K to higher temperatures are speculative. For simplicity, we average out the hysteresis effect observed during upstroke and downstroke transitions as previously done by Mishima [153], which results in a HDA <-> VHDA transition at T=140K and P 0.70 GPa, which is 0.25 GPa broad and a LDA <-> HDA transition at T = 140 K and P 0.20 GPa, which is at most 0.01 GPa broad (i.e., discontinuous) within the experimental resolution.
The DSC, TG curves of solvates and hydrates are related to the phase diagrams between substance and solvent (or water). Eutectic are observed. Fusion or decomposition of the solvate may occur during heating. Therefore, one may observe the melting of the solvate followed by recrystallization into the anhydrous form or the endothermic desolvatation in the solid state. In certain cases both phenomena may over-lapp. Details about experimental factors and examples can be found in Ref. If the anhydrous form is metastable, further phase transitions follow the desolvatation. If several solvates or hydrates exist, the transitions observed depend on the pressure, as demonstrated by Soustelle in the case of copper sulfate pentahydrate. Depending on the pressure, the direct dehydration into the anhydrous or the dehydration via the monohydrate, or the three dehydration steps trihydrate, monohydrate and anhydrous forms may be obtained. Hydrates have been the subject of... [Pg.3737]


See other pages where Metastable phase water transitions is mentioned: [Pg.83]    [Pg.715]    [Pg.604]    [Pg.136]    [Pg.627]    [Pg.48]    [Pg.212]    [Pg.218]    [Pg.23]    [Pg.30]    [Pg.271]    [Pg.739]    [Pg.50]    [Pg.61]    [Pg.1]    [Pg.212]    [Pg.230]    [Pg.537]    [Pg.539]    [Pg.560]    [Pg.361]    [Pg.63]    [Pg.83]    [Pg.151]    [Pg.193]    [Pg.321]    [Pg.324]    [Pg.355]    [Pg.13]    [Pg.206]    [Pg.3037]    [Pg.6569]    [Pg.136]    [Pg.1916]    [Pg.153]    [Pg.515]    [Pg.238]    [Pg.8]    [Pg.310]   
See also in sourсe #XX -- [ Pg.54 ]




SEARCH



Metastability phases

Metastable

Phase transition metastability

Phase transition metastable

Water phases

© 2024 chempedia.info