Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metals calcium salts

Review the "Stoichiometry chapter for information about mass-mass stoichiometry. In this investigation, you will use a double-displacement reaction, but Na2C03 will be used as a reagent to identify how much calcium is present in a sample. Like strontium and other Group 2 metals, calcium salts react with carbonate-containing salts to produce an insoluble precipitate. [Pg.808]

These are similar to those of the alkali metals but are rather less soluble in water. However, calcium sulphide, for example, is not precipitated by addition of sulphide ions to a solution of a calcium salt, since in acid solution the equilibrium position... [Pg.287]

The principal calcium salt used as a flocculant is calcium hydroxide [1305-62-0] or lime. It has been used in water treatment for centuries (see Calcium compounds). Newer products are more effective, and its use in water and effluent treatment is declining (10). It is still used as a pH modifier and to precipitate metals as insoluble hydroxides. Lime is also sometimes used in combination with polymeric flocculants. [Pg.32]

Calcium Phosphates. The alkaline-earth phosphates are generally much less soluble than those of the alkaH metals. Calcium phosphates include the most abundant natural form of phosphoms, ie, apatites, Ca2Q(P0 3X2, where X = OH, F, Cl, etc. Apatite ores are the predominant basic raw material for the production of phosphoms and its derivatives. Calcium phosphates are the main component of bones and teeth. After sodium phosphates, the calcium salts are the next largest volume technical- and food-grade phosphates. Many commercial appHcations of the calcium phosphates depend on thek low solubiHties. [Pg.333]

A large number of pyrophosphate salts have been prepared (Table 10). In addition to individual metal salts, ammonium pyrophosphates and many mixed-metal pyrophosphates are known. Pyrophosphates of notable commercial importance include sodium, potassium, and calcium salts. [Pg.336]

The best way to prevent crevice corrosion is to prevent crevices. From a cooling water standpoint, this requires the prevention of deposits on the metal surface. Deposits may be formed by suspended soHds (eg, silt, siUca) or by precipitating species, such as calcium salts. [Pg.267]

The first synthetic organic pigments were used to shade or tone the weaker colorants and became known as toners. Metal toners usually contain one sulfonic acid group and often a carboxyUc acid group. The pigment is rendered iasoluble, ie, laked Ai a heavy metal cation. An example of a calcium salt is Lithol Rubine BK [5858-81-1] Vhl) (Cl Pigment Red 57 Cl 15850). [Pg.454]

Calcium ion enters the system not ordy in the form of water hardness but also in the form of calcium salts contained in the sod. Other heavy-metal ions such as aluminum and ferric iron may also be present in the sod, and must be removed by an appropriate budder to achieve good sod removal. Effective budders for cotton washing are those for which the calcium dissociation constant, expressed as or —logif -, is >4 and preferably >7 (33). [Pg.529]

Yttrium and lanthanum are both obtained from lanthanide minerals and the method of extraction depends on the particular mineral involved. Digestions with hydrochloric acid, sulfuric acid, or caustic soda are all used to extract the mixture of metal salts. Prior to the Second World War the separation of these mixtures was effected by fractional crystallizations, sometimes numbered in their thousands. However, during the period 1940-45 the main interest in separating these elements was in order to purify and characterize them more fully. The realization that they are also major constituents of the products of nuclear fission effected a dramatic sharpening of interest in the USA. As a result, ion-exchange techniques were developed and, together with selective complexation and solvent extraction, these have now completely supplanted the older methods of separation (p. 1228). In cases where the free metals are required, reduction of the trifluorides with metallic calcium can be used. [Pg.945]

Generally, the most common cations in the soil solution are potassium, sodium, magnesium and calcium. Alkali soils are high in sodium and potassium, while calcareous soils contain predominantly magnesium and calcium. Salts of all four of these elements tend to accelerate metallic corrosion by the mechanisms mentioned. The alkaline earth elements, calcium and magnesium, however, tend to form insoluble oxides and carbonates in nonacid conditions. These insoluble precipitates may result in a protective layer on the metal surface and reduced corrosive activity. [Pg.383]

Not all sulphates are as readily reduced as sodium sulphate, for instance, calcium sulphate does not usually lead to sulphide penetration, although the presence of other substances with calcium sulphate may lead to accelerated oxidation for other reasons. The results for laboratory tests on a series of metals and alloys in sodium sulphate -F sodium chloride and calcium sulphate + calcium chloride mixtures are shown in Table 7.12 . In many cases sulphide peneration could be noted with the sodium salts but not with the calcium salts. [Pg.1033]

Material No mixture Loss of metal (g/m") Sodium salts Calcium salts... [Pg.1033]

Electrochemical processes in melts are often attended by side reactions and phenomena complicating the primary process. This is true, in particular, for the technically very important class of reactions in which a number of metals (calcium, barium, and others) are obtained electrometallurgically from molten salts. In many of these processes the metal that is deposited (sometimes in a highly disperse state) is found to interact with the corrosive melt for example, in a reaction such as... [Pg.134]

Picric acid, in common with several other polynitrophenols, is an explosive material in its own right and is usually stored as a water-wet paste. Several dust explosions of dry material have been reported [1]. It forms salts with many metals, some of which (lead, mercury, copper or zinc) are rather sensitive to heat, friction or impact. The salts with ammonia and amines, and the molecular complexes with aromatic hydrocarbons, etc. are, in general, not so sensitive [2], Contact of picric acid with concrete floors may form the friction-sensitive calcium salt [3], Contact of molten picric acid with metallic zinc or lead forms the metal picrates which can detonate the acid. Picrates of lead, iron, zinc, nickel, copper, etc. should be considered dangerously sensitive. Dry picric acid has little effect on these metals at ambient temperature. Picric acid of sufficient purity is of the same order of stability as TNT, and is not considered unduly hazardous in regard to sensitivity [4], Details of handling and disposal procedures have been collected and summarised [5],... [Pg.687]

The sodium and calcium salts of EDTA (ethylenediaminetetraacetic acid, Fig. 9.3.1.) are common sequestrants in food products. A three-dimensional representation of EDTA is shown in color Fig. 9.3.2. The EDTA ion is an especially effective sequestrant, forming up to six coordinate covalent bonds with a metal ion. These bonds are so named because a lone pair of electrons on a single atom serves as the source of the shared electrons in the bond between the metal ion and EDTA. The two nitrogen atoms in the amino groups and the oxygen... [Pg.120]

Atomic techniques such as atomic absorption spectrometry (AA), inductively coupled plasma-optical emission spectrometry (ICP-OES), and inductively coupled plasma-mass spectrometry (ICP-MS), have been widely used in the pharmaceutical industry for metal analysis.190-192 A content uniformity analysis of a calcium salt API tablet formulation by ICP-AES exhibited significantly improved efficiency and fast analysis time (1 min per sample) compared to an HPLC method.193... [Pg.268]

It has been recognised for centuries that certain natural dyes, including alizarin, kermes, cochineal and fustic, now known to contain o-dihydroxy phenolic or anthraquinonoid residues in their structures, can be fixed on natural fibres using oxides or salts of transition metals as mordants. Although mordanted wool dyed with alizarin showed excellent fastness, reproducibility of shade was difficult to achieve because of the variable composition of the raw materials available. The famous Turkey red, in which alizarin was applied to aluminium-mordanted wool in the presence of calcium salts, formed a metallised complex the nature of which remains in considerable doubt. [Pg.231]

Several metal lakes have been prepared from this parent structure of all (3-oxy-naphthoic acid pigments. The list includes the barium salt (P.R.64), the calcium salt (P.R.64 1), and the copper lake, which is registered as Pigment Brown 5. The pigments are rarely used in Europe, and their impact on the market in Japan and the USA has also decreased considerably. [Pg.335]

From the anionic surfactants (Table 1.1) the most relevant is LAS with an annual global production volume of more than 3 X 1061 in 2001. LAS has a wide application because of its excellent detersive properties and cost-performance ratio. Commercial LAS is applied mainly in the formulation of powder and liquid laundry detergents. The calcium salts are used as an emulsifier in pesticide formulations their amine salts are used in dry cleaning and as degreasing agents in the metal industry [14]. [Pg.45]

In aqueous solutions, calcium chloride undergoes double decomposition reactions with a number of soluble salts of other metals to form precipitates of insoluble calcium salts. For example, mixing solutions of calcium chloride with sodium carbonate, sodium tungstate and sodium molybdate solutions precipitates the carbonates, tungstates, and molybdates of calcium, respectively. Similar precipitation reactions occur with carboxylic acids or their soluble salt solutions. CaCb forms calcium sulfide when H2S is passed through its solution. Reaction with sodium borohydride produces calcium borohydride, Ca(BH4)2. It forms several complexes with ammonia. The products may have compositions CaCl2 2NH3, CaCb dNHs, and CaCb SNHs. [Pg.163]

Of some interest is the ability of 3-acyltetramic acid to form stable complexes with ions of transition metals, e.g. Cu2+, La3+, Sm3+, Eu +, Gd3+, and boron complexes [1]. Indeed, examples are available in which the tetramic acid occurs naturally as magnesium or calcium salts. Methods of isolation or purification involving acidic solvents generate conditions that... [Pg.112]


See other pages where Metals calcium salts is mentioned: [Pg.486]    [Pg.486]    [Pg.292]    [Pg.380]    [Pg.385]    [Pg.395]    [Pg.350]    [Pg.294]    [Pg.85]    [Pg.261]    [Pg.154]    [Pg.157]    [Pg.212]    [Pg.87]    [Pg.813]    [Pg.1065]    [Pg.377]    [Pg.215]    [Pg.105]    [Pg.134]    [Pg.170]    [Pg.296]    [Pg.17]    [Pg.624]    [Pg.315]    [Pg.326]    [Pg.332]    [Pg.351]    [Pg.110]    [Pg.113]   
See also in sourсe #XX -- [ Pg.301 , Pg.302 ]




SEARCH



Calcium metal

Calcium salts

Calcium, Metallic

© 2024 chempedia.info