Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Iron, metallic

Discussion of doping of non-ferrous alloys is deferred to Chapter 12. [Pg.305]

The spectrum of iron metal featured in many of the early papers in which the magnetic hyperfine interactions of Fe were first analysed, but these are now of historical interest only. A definitive work [1] on the temperature dependence of the spectrum showed that the hyperfine field at 293-9 K was //eff = 330 kG. The magnetic moment ratio was found to be [Pg.305]

Detailed interpretation of the chemical isomer shift value (which is used in this book as the calibration zero at room temperature) is difficult. There is no defined orbital state as in the Fe and Fe complexes, and the chemical isomer shift will be affected by both a direct 4s-conduction band contribution and indirect 3d-shielding of the core 3j-electrons. The problems involved have been discussed in detail [7]. The free-atom configuration 3 / 4j agrees with the band structure, but a density-of-states approach favours and the Mdssbauer data suggests The temperature [Pg.306]

Discontinuities in both the chemical isomer shift and temperature dependence of the recoil-free fraction have been found at the x-y ( 1200 K) and y-S ( 1660 K) phase transitions [11]. The changes in recoil-free fraction of d/ y = 0 030 0-008 and Sfyg = —0 06 0-01 correspond to a difference in the Debye temperatures of the different phases of S9 y = -b(8 3 K) and dOy, = -(70 15 K). [Pg.307]

The internal magnetic field and chemical isomer shift both decrease linearly with increasing pressure [12-14]. [Pg.307]


Siemens s process A method of steel manufacture by addition of scrap metal, iron oxides and ferromanganese to molten pig (cast) iron. [Pg.357]

Corrosion is the gnawing away of materials due to exposure to different environments. Basically, a material is trying to return to its natural state, e.g., metallic iron oxidizes to fonn tire ore from whence it came. [Pg.2714]

According to the usual procedure for preparing bromobenzene bromine is added to ben zene in the presence of metallic iron (customarily a few carpet tacks) and the reaction mixture is heated... [Pg.480]

Analysis of Trace or Minor Components. Minor or trace components may have a significant impact on quaHty of fats and oils (94). Metals, for example, can cataly2e the oxidative degradation of unsaturated oils which results in off-flavors, odors, and polymeri2ation. A large number of techniques such as wet chemical analysis, atomic absorption, atomic emission, and polarography are available for analysis of metals. Heavy metals, iron, copper, nickel, and chromium are elements that have received the most attention. Phosphoms may also be detectable and is a measure of phosphoHpids and phosphoms-containing acids or salts. [Pg.134]

Colorless crystals of iron(II) fluoride tetrahydrate [13940-89-1Fep2 4H2O, can be obtained by dissolving metallic iron or the anhydrous salt in hydrofluoric acid. The crystals of Fep2 4H2O are sparingly soluble in water and decompose to Fe202 when heated in air. [Pg.202]

The yield of hydroquinone is 85 to 90% based on aniline. The process is mainly a batch process where significant amounts of soHds must be handled (manganese dioxide as well as metal iron finely divided). However, the principal drawback of this process resides in the massive coproduction of mineral products such as manganese sulfate, ammonium sulfate, or iron oxides which are environmentally not friendly. Even though purified manganese sulfate is used in the agricultural field, few solutions have been developed to dispose of this unsuitable coproduct. Such methods include MnSO reoxidation to MnO (1), or MnSO electrochemical reduction to metal manganese (2). None of these methods has found appHcations on an industrial scale. In addition, since 1980, few innovative studies have been pubUshed on this process (3). [Pg.487]

Pure iron is a silvery white, relatively soft metal and is rarely used commercially. Typical properties are Hsted in Table 1. Electrolytic (99.9% pure) iron is used for magnetic cores (2) (see Magnetic materials, bulk). Native metallic iron is rarely found in nature because iron which commonly exhibits valences of +2 and +3 combines readily with oxygen and sulfur. Iron oxides are the most prevalent form of iron (see Iron compounds). Generally, these iron oxides (iron ores) are reduced to iron and melted in a blast furnace. The hot metal (pig iron) from the blast furnace is refined in steelmaking furnaces to make steel... [Pg.411]

Direct Reduction. Direct reduction processes are distinguished from other ironmaking processes in that iron oxide is converted to metallic iron without melting. Because this product, called direct reduced iron (DRI), is soHd, it is most suitable for melting in an electric arc furnace (EAF) as a substitute for scrap (see Furnaces, electric). The briquetted form of DRI, hot briquetted iron (HBI) is used when the product is to be transported. Briquetting increases density and chemical stabiUty. The predominant direct reduction processes (MIDREX and HyL III) are based on natural gas as a fuel and reductant source. They are economically attractive in regions where natural gas is cheap and abundant, especially if iron ore is available nearby (see Iron BY DIRECT reduction). ... [Pg.420]

Direct reduction (DR) is the process of converting iron ore (iron oxide) into metallic iron without melting. The metallic iron product, known as direct reduced iron (DRI), is used as a high quaUty feed material in steelmaking. [Pg.424]

The most common method of converting iron ore to metallic iron utilizes a blast furnace wherein the material is melted to form hot metal (pig iron). Approximately 96% of the world s iron is produced this way (see Iron). However, in the blast furnace process energy costs are relatively high, pollution problems of associated equipment are quite severe, and capital investment requirements are often prohibitively expensive. In comparison to the blast furnace method, direct reduction permits a wider choice of fuels, is environmentally clean, and requires a much lower capital investment. [Pg.424]

Metallization is defined as the percent of total iron in the DRI which has been converted to metallic iron. For example, DRI having a total iron content of 92% and a metaUic iron content of 85%, has 92.4% metaUization. [Pg.424]

Assuming that the initial iron oxide is hematite, Fe202, and this ore is completely converted to FeO, ie, no metallic iron is formed, the reduction would be 33.33%. Thus the relationship between metallization and reduction is... [Pg.424]

The reduction of iron ore is accompHshed by a series of reactions that are the same as those occurring in the blast furnace stack. These include reduction by CO, H2, and, in some cases soHd carbon, through successive oxidation states to metallic iron, ie, hematite [1309-37-17, Fe202, is reduced to magnetite [1309-38-2], Fe O, which is in turn reduced to wustite [17125-56-3], FeO, and then to metallic iron, Fe. The typical reactions foUow. [Pg.425]

In the EASTMET process iron oxide fines (minus 0.1 mm), pulverized coal, and binder are mixed together and pehetized. The green pehets are heated in a dryer to remove moisture and fed to a rotary hearth furnace, where the pehets are placed on a flat rotating surface (hearth) in an even layer one to two pehets deep. As the hearth rotates the pehets are heated to 1250—1350°C, and the iron oxide is reduced to metallic iron in 6 to 10 minutes. [Pg.431]

Reoxidation occurs when the metallic iron in hot DRI reacts with oxygen in the air to form either Ee O or Ee202. The reaction continues as long as the DRI remains hot and sufficient oxygen is avadable. Because reoxidation reactions are exothermic and DRI is a good insulator, it is possible that once reoxidation begins inside a pde, the DRI temperature increases and accelerates the reoxidation rate. Although the inner core of the pde may reach temperatures up to the fusion point of iron, the maximum temperature of the outer parts of the pde will be much lower because of heat dissipation. [Pg.431]

Corrosion occurs when the metallic iron in DRI is wetted with fresh or salt water and reacts with oxygen from air to form mst, Ee(OH)2- The corrosion reactions continue as long as water is present. Because water evaporates at approximately 100°C, corrosion reactions have a low temperature limit even though the reactions are exothermic. Small amounts of hydrogen may be generated when DRI reacts with water. However, this poses no safety problem as long as proper ventilation is provided. [Pg.431]

Synthetic mtile raw material is produced from ilmenite by reducing the iron oxides and leaching out the metallic iron with hydrochloric or sulfuric acids. In both processes, the objective is to increase the amount of Ti02 in the raw materials. [Pg.7]

In the direct precipitation process, the seeds of iron(III) oxide are added to an iron salt solution, most often iron(II) sulfate, which is subsequendy oxidized by air. The released sulfuric acid is removed by the addition of metallic iron with which it reacts to iron(II) sulfate. The overall reaction shows that ferrous sulfate is not consumed during the process. It only helps to oxidize metallic iron to ferric oxide ... [Pg.12]

The Faux process is a modification of the Bechamp reaction that was discovered in 1854. It has been used for the reduction of nitrobenzene to aniline using metallic iron ... [Pg.12]

Aqueous Electrodeposition. The theory of electro deposition is well known (see Electroplating). Of the numerous metals used in electro deposition, only 10 have been reduced to large-scale commercial practice. The most commonly plated metals are chromium, nickel, copper, zinc, rhodium, silver, cadmium, tin, and gold, followed by the less frequendy plated metals iron, cesium, platinum, and palladium, and the infrequendy plated metals indium, mthenium, and rhenium. Of these, only platinum, rhodium, iddium, and rhenium are refractory. [Pg.41]

It has been known for many centuries that iron ore, embedded in burning charcoal, can be reduced to metallic iron (1,2). Iron was made by this method as early as 1200 BC. Consisting almost entirely of pure iron, the first iron metal closely resembled modem wrought iron, which is relatively soft, malleable, ductile, and readily hammer-welded when heated to a sufficientiy high temperature. This metal was used for many purposes, including agricultural implements and various tools. [Pg.373]

Purification. Tellurium can be purified by distillation at ambient pressure in a hydrogen atmosphere. However, because of its high boiling point, tellurium is also distilled at low pressures. Heavy metal (iron, tin, lead, antimony, and bismuth) impurities remain in the still residue, although selenium is effectively removed if hydrogen distillation is used (21). [Pg.386]

The sihcates formed in reactions 2 and 3 fuse with the added fluxes to form a Hquid slag at which point carbon monoxide loses its effectiveness as a reducing agent. Unreacted carbon from the fuel then becomes the predominant reductant in reducing both staimous siUcate to tin and ferrous siUcate to iron. The metallic iron, in turn, reduces tin from stannous siUcate ... [Pg.58]

Both processes also use up-graded ilmenite (slags). About 30% of the world s titanium feedstocks are suppHed by titanium slag producers in Canada, South Africa, and Norway. Slags are formed by the high temperature reduction of ilmenites in electric furnaces. Much of the iron oxide content is reduced to metallic iron and separated as a saleable by-product. Magnesium and other impurities may also be incorporated in the following equations. [Pg.123]

In most ores, sufficient Fe is already present. For some ores, it is necessary to add metallic iron. In practice, the oxidation potential of the solution can be monitored and controlled using the Fe /Fe ratio. Very high leaching efficiencies with H2SO ate common, eg, 95—98% dissolution yield of uranium (39). If acid consumption exceeds 68 kg/1 of ore treated, alkaline leaching is preferred. The comparative costs of acid, sodium hydroxide, and sodium carbonate differ widely in different areas and are the determining factor. [Pg.317]

Under favorable conditions the thermite produces temperatures of about 2200°C, high enough to turn the newly formed metallic iron into a white-hot Liquid that acts as a heat reservoir to prolong and spread the heat or igniting action. [Pg.401]

The polymorphism of certain metals, iron the most important, was after centuries of study perceived to be the key to the hardening of steel. In the process of studying iron polymorphism, several decades were devoted to a red herring, as it proved this was the P-iron controversy. P-iron was for a long time regarded as a phase distinct from at-iron (Smith 1965) but eventually found to be merely the ferromagnetic form of ot-iron thus the supposed transition from P to a-iron was simply the Curie temperature, p-iron has disappeared from the iron-carbon phase diagram and all transformations are between a and y. [Pg.99]

Most common metals Mild steel, aluminium, brass, copper or stainless steel Any common metal Any common metal Iron, steel, copper, brass, plastic for dry gas. For moist gas use stainless steel or certain plastics Copper-lined metals for... [Pg.266]


See other pages where Iron, metallic is mentioned: [Pg.729]    [Pg.108]    [Pg.229]    [Pg.339]    [Pg.99]    [Pg.425]    [Pg.426]    [Pg.437]    [Pg.440]    [Pg.46]    [Pg.84]    [Pg.12]    [Pg.340]    [Pg.421]    [Pg.554]    [Pg.124]    [Pg.276]    [Pg.1]    [Pg.506]    [Pg.655]    [Pg.357]    [Pg.624]   
See also in sourсe #XX -- [ Pg.19 ]

See also in sourсe #XX -- [ Pg.41 , Pg.84 , Pg.115 ]

See also in sourсe #XX -- [ Pg.222 ]

See also in sourсe #XX -- [ Pg.214 ]




SEARCH



Iron metal

© 2024 chempedia.info