Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metallic catalyst, functions

Curing of PU resins is often carried out in the presence of catalysts. The nature of the catalyst used varies, depending upon whether it is moisture-cured (NCO-H2O reaction) or if the curing involves reaction between —NCO and—OH groups. Tertiary amines have been found to be the most effective catalysts for NCO-H2O reactions, whereas metal catalysts function as the most efficient catalysts for — NCO and —OH reactions. However, tertiary amines have also been found to be effective, in some cases, for the latter type of reaction. Such catalytic reactions have been comprehensively reviewed by several workers. Catalytic activity of tertiary amines increases with... [Pg.946]

Transesterification of methyl methacrylate with the appropriate alcohol is often the preferred method of preparing higher alkyl and functional methacrylates. The reaction is driven to completion by the use of excess methyl methacrylate and by removal of the methyl methacrylate—methanol a2eotrope. A variety of catalysts have been used, including acids and bases and transition-metal compounds such as dialkjitin oxides (57), titanium(IV) alkoxides (58), and zirconium acetoacetate (59). The use of the transition-metal catalysts allows reaction under nearly neutral conditions and is therefore more tolerant of sensitive functionality in the ester alcohol moiety. In addition, transition-metal catalysts often exhibit higher selectivities than acidic catalysts, particularly with respect to by-product ether formation. [Pg.248]

This reaction, cataly2ed by uv radiation, peroxides, and some metal catalysts, eg, platinum, led to the production of a broad range of alkyl and functional alkyl trihalosilanes. These alkylsilanes have important commercial value as monomers and are also used in the production of sihcon fluids and resins. Additional information on the chemistry of sihcon hahdes is available (19,21—24). [Pg.19]

Carrier. The metal catalyst is generally dispersed on a high surface area carrier, ie, the carrier is given a washcoat of catalyst, such that very small (2—3 nm dia) precious metal crystaUites ate widely dispersed over the surface area, serving two basic functions. It maximizes the use of the cosdy precious metal, and provides a large surface area thereby increasing gas contact and associated catalytic reactions (18). [Pg.503]

The metallic catalysts for exliaust pollution control are designed to perform three functions. The air/fuel ratio employed in combustion engines creates exhaust products which are a mixture of hydrocarbons, carbon oxides, and niU ogen oxides. These must be rendered environmentally innocuous by reactions on the catalyst such as... [Pg.138]

Hydrosilation silicones or addition cure systems utilize a hydride functional crosslinker with a vinyl functional base polymer and a noble metal catalyst. While the cure can be initiated with UV [48,49], thermal cure versions dominate the commercial market [23,50]. In thermal cure systems, inhibitors are necessary for processing and anchorage additives are common. [Pg.544]

In contrast to heterogeneous metal catalysts, the chlororhodium complex is not sensitive to sulfur poisoning,thus allowing the saturation of double bonds in the presence of mercapto functions. [Pg.187]

The literature on catalytic hydrogenation is very extensive, and it is tempting to think that after all this effort there must now exist some sort of cosmic concept that would allow one to select an appropriate catalyst from fundamentals or from detailed knowledge of catalyst functioning. For the synthetic chemist, this approach to catalyst selection bears little fruit. A more reliable, quick, and useful approach to catalyst selection is to treat the catalyst simply as if it were an organic reagent showing characteristic properties in its catalytic behavior toward each functionality. For this purpose, the catalyst is considered to be only the primary catalytic metal present. Support and... [Pg.2]

Noble-metal catalysts can be used under mild conditions. Rhodium 16,24,61,73) has given excellent results. Rhodium seems esp>ecially useful when other catalysts give excessive secondary amine. Ruthenium functions best in aqueous media, but under these conditions it is apt to promote extensive... [Pg.99]

It has been demonstrated that group 6 Fischer-type metal carbene complexes can in principle undergo carbene transfer reactions in the presence of suitable transition metals [122]. It was therefore interesting to test the compatibility of ruthenium-based metathesis catalysts and electrophilic metal carbene functionalities. A series of examples of the formation of oxacyclic carbene complexes by metathesis (e.g., 128, 129, Scheme 26) was published by Dotz et al. [123]. These include substrates where double bonds conjugated to the pentacarbonyl metal moiety participate in the metathesis reaction. Evidence is... [Pg.259]

By 19884 it became obvious that the NEMCA effect, this large apparent violation of Faraday s law, is a general phenomenon not limited to a few oxidation reactions on Ag. Of key importance in understanding NEMCA came the observation that NEMCA is accompanied by potential-controlled variation in the catalyst work function.6 Its importance was soon recognized by leading electrochemists, surface scientists and catalysis researchers. Today the NEMCA effect has been studied already for more than 60 catalytic systems and does not seem to be limited to any specific type of catalytic reaction, metal catalyst or solid electrolyte, particularly in view of... [Pg.2]

Recent studies in our laboratory have demonstrated that formylation of P-H bonds can be achieved without the aid of transition metal catalysts under mild reaction conditions [47]. For example, amide and thioether functionalized primary phosphines, 5 and 9 respectively, upon treatment with 37% formaldehyde produced the corresponding amide/thioether functionaUzed water soluble phosphines 21 and 22 respectively in near quantitative yield (Scheme 10) [47]. [Pg.132]

Indeed, these reactions proceed at 25 °C in ethanol-aqueous media in the absence of transition metal catalysts. The ease with which P-H bonds in primary phosphines can be converted to P-C bonds, as shown in Schemes 9 and 10, demonstrates the importance of primary phosphines in the design and development of novel organophosphorus compounds. In particular, functionalized hydroxymethyl phosphines have become ubiquitous in the development of water-soluble transition metal/organometallic compounds for potential applications in biphasic aqueous-organic catalysis and also in transition metal based pharmaceutical development [53-62]. Extensive investigations on the coordination chemistry of hydroxymethyl phosphines have demonstrated unique stereospe-cific and kinetic propensity of this class of water-soluble phosphines [53-62]. Representative examples outlined in Fig. 4, depict bidentate and multidentate coordination modes and the unique kinetic propensity to stabilize various oxidation states of metal centers, such as Re( V), Rh(III), Pt(II) and Au(I), in aqueous media [53 - 62]. Therefore, the importance of functionalized primary phosphines in the development of multidentate water-soluble phosphines cannot be overemphasized. [Pg.133]

Why do many catalytic reactions exhibit volcano behavior as a function of d-band filling of the metal catalyst ... [Pg.409]

The most spectacular results, in terms of comparison between CFPs- and carbon-supported metal catalysts, were likely provided by Toshima and co-workers [33,34]. As illustrated in Section 3.3.3, they were able to produce platinum and rhodium catalysts by the covalent immobilization of pre-formed, stabilized metal nanoclusters into an amine functionalized acrylamide gel (Scheme 5). To this purpose, the metal nanopartides were stabilized by a linear co-polymer of MMA and VPYR. The reaction between its ester functions and the amine groups of the gel produced the covalent link between the support and the... [Pg.224]


See other pages where Metallic catalyst, functions is mentioned: [Pg.171]    [Pg.171]    [Pg.496]    [Pg.488]    [Pg.503]    [Pg.24]    [Pg.129]    [Pg.180]    [Pg.184]    [Pg.187]    [Pg.20]    [Pg.96]    [Pg.218]    [Pg.269]    [Pg.283]    [Pg.24]    [Pg.48]    [Pg.191]    [Pg.298]    [Pg.232]    [Pg.248]    [Pg.185]    [Pg.873]    [Pg.194]    [Pg.308]    [Pg.272]    [Pg.54]    [Pg.161]    [Pg.162]    [Pg.471]    [Pg.223]    [Pg.48]    [Pg.512]    [Pg.600]    [Pg.3]   
See also in sourсe #XX -- [ Pg.163 ]




SEARCH



Catalyst, function

Catalysts functional

Functionalization catalysts

Metal Function of the Catalyst

Metal functions

© 2024 chempedia.info