Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal dissolution titanium

Although most metals display an active or activation controlled region, when polarised anodically from the equilibrium potential, many metals and perhaps even more so alloys developed for engineering applications, produce a solid corrosion product. In many examples the solid is an oxide that is the stable phase rather than the ion in solution. If this solid product is formed at the metal surface and has good intimate contact with the metal, and features low ion-conductivity, the dissolution rate of the metal is limited to the rate at which metal ions can migrate through the film. The layer of corrosion product acts as a barrier to further ion movement across the interface. The resistance afforded by this corrosion layer is generally referred to as the passivity. Alloys such as the stainless steels, nickel alloys and metals like titanium owe their corrosion resistance to this passive layer. [Pg.156]

The technique may be understood in terms of metallic passivity, i.e. the loss of chemical activity experienced by certain metals and alloys under particular environmental conditions as a result of surface film formation. Equations 15.2 and 15.3 suggest that the application of an anodic current to a metal should tend to increase metal dissolution and decrease hydrogen production. Metals that display passivity, such as iron, nickel chromium, titanium and their alloys respond to an anodic current by shifting their polarisation potential into the passive regon. Current densities required to initiate passivity are relatively high [Uhlig and Revie 1985] but the current density to maintain passivity are low, with a consequent reduction in power costs [Scully 1990]. [Pg.376]

In the absence of suspended particles, the corrosion rate of passive metals such as stainless steel or titanium in neutral media is not markedly affected by hydrodynamic conditions (Table 10.26). However, when exposed to slurries, these metals are subject to erosion corrosion because the suspended particles that impinge on the surface damage the passive film. As a consequence an anodic partial current flows which serves for film repair and repassivation of damaged areas. In the presence of aggressive anions such as chloride, passive film damage can lead to metal dissolution by pitting [23]. [Pg.451]

Titanium(lV) fluoride dihydrate [60927-06-2] TiF 2H20, crystals can be prepared by the action of aqueous HF on titanium metal. The solution is carefully evaporated to obtain the crystals. Neutral solutions when heated slowly hydroly2e and form titanium(lV) oxyfluoride [13537-16-17, TiOF2 (6). Upon dissolution in hydrogen fluoride, TiF forms hexafluorotitanic acid [17439-11-17, ll]TiF. ... [Pg.255]

Titanium Silicides. The titanium—silicon system includes Ti Si, Ti Si, TiSi, and TiSi (154). Physical properties are summarized in Table 18. Direct synthesis by heating the elements in vacuo or in a protective atmosphere is possible. In the latter case, it is convenient to use titanium hydride instead of titanium metal. Other preparative methods include high temperature electrolysis of molten salt baths containing titanium dioxide and alkalifluorosiUcate (155) reaction of TiCl, SiCl, and H2 at ca 1150°C, using appropriate reactant quantities for both TiSi and TiSi2 (156) and, for Ti Si, reaction between titanium dioxide and calcium siUcide at ca 1200°C, followed by dissolution of excess lime and calcium siUcate in acetic acid. [Pg.132]

The examples already discussed lead to the conclusion that any reaction of a metal with its environment must be regarded as a corrosion process irrespective of the extent of the reaction or of the rates of the initial and subsequent stages of the reaction. It is not illogical, therefore, to regard passivity, in which the reaction product forms a very thin protective film that controls rate of the reaction at an acceptable level, as a limiting case of a corrosion reaction. Thus both the rapid dissolution of active titanium in 40% H2SO4 and the slow dissolution of passive titanium in that acid must be... [Pg.5]

Some metals and alloys have low rates of film dissolution (low /p) even in solutions of very low pH, e.g. chromium and its alloys, and titanium. In these cases the value of /p is quite low, and although it increases as the temperature increases, a maximum is reached when the solution boils. The maximum current is below and breakdown does not occur. However, in certain alloys, e.g. Cr-Fe alloys, the protective film may change in composition on increasing the anode potential to give oxides that are more soluble at low pH and are therefore more susceptible to temperature increases. This occurs in the presence of cathode reactants such as chromic acid which allow polarisation of the anode. [Pg.326]

As indicated above, when a positive direct current is impressed upon a piece of titanium immersed in an electrolyte, the consequent rise in potential induces the formation of a protective surface film, which is resistant to passage of any further appreciable quantity of current into the electrolyte. The upper potential limit that can be attained without breakdown of the surface film will depend upon the nature of the electrolyte. Thus, in strong sulphuric acid the metal/oxide system will sustain voltages of between 80 and 100 V before a spark-type dielectric rupture ensues, while in sodium chloride solutions or in sea water film rupture takes place when the voltage across the oxide film reaches a value of about 12 to 14 V. Above the critical voltage, anodic dissolution takes place at weak spots in the surface film and appreciable current passes into the electrolyte, presumably by an initial mechanism involving the formation of soluble titanium ions. [Pg.878]

Organic hydroperoxides have also been used for the oxidation of sulphoxides to sulphones. The reaction in neutral solution occurs at a reasonable rate in the presence of transition metal ion catalysts such as vanadium, molybdenum and titanium - , but does not occur in aqueous media . The usual reaction conditions involve dissolution of the sulphoxide in alcohols, ethers or benzene followed by dropwise addition of the hydroperoxide at temperatures of 50-80 °C. By this method dimethyl sulphoxide and methyl phenyl sulphoxide have been oxidized to the corresponding sulphone in greater than 90% yields . A similar method for the oxidation of sulphoxides has been patented . Unsaturated sulphoxides are oxidized to the sulphone without affecting the carbon-carbon double bonds. A further patent has also been obtained for the reaction of dimethyl sulphoxide with an organic hydroperoxide as shown in equation (19). [Pg.976]

The electrochemistry of Ti2+ in 66.7 m/o AlCl3-NaCl has been investigated wherein the electroactive Ti2+ was prepared by the oxidation of Ti metal with liquid A1C13 [176, 185] and by the electrochemical dissolution of titanium metal [120, 177], The authors of both studies concluded that Ti2+ may be oxidized stepwise to Ti3+ and Ti4+ and that both processes are reversible at platinum and tungsten electrodes. However, anomalous voltammetric behavior at high Ti2+ concentrations (greater than 50 mmol L ) suggests the formation of polymeric Ti2+ species in the melt. The reduction of Ti2+ to the metal was not observed at potentials more positive than that required for aluminum deposition. [Pg.330]

Soluble oil metal-working fluids, 1 22 Soluble oils, 15 240 Soluble silicates, 22 451-452 dissolution of, 22 455-456 history and applications of, 22 452 Soluble starch synthases, 12 492 Soluble titanium glycolate complexes, 25 87 Solute clearances... [Pg.867]

In a pilot plant [2,13], superalloy scrap containing Mo, W, Cr, Fe, Co, and Ni is pretreated in a furnace with carbon to transfer refractory metals (Mo, W, etc.) into carbides. The melt is granulated and the resulting material is charged into titanium baskets. Diaphragm-type electrolytic cells are used for anodic dissolution of the granulated material. Fe, Co, Ni, and small amounts of Cr are dissolved into a calcium chloride solution by the current. The metal carbides are not dissolved and remain as an anodic residue in the baskets. [Pg.625]

The kinetics that control the small droplet reaction are characterised by the dissolution of titanium oxide which, in turn, exposes further, unoxidised metal. Interestingly, this process appears to be independent of the type of oxidant, whether it be potassium perchlorate, potassium nitrate or atmospheric oxygen. [Pg.90]

Anodic dissolution of metals in the presence of ligands allows the syntheses of various coordination complexes, and these have included examples of the preparation of a limited number of titanium complexes. For example, anodic dissolution of Ti in the presence of CO and cyclopentadienyl monomer is reported to yield [Ti( 5.C5H5)2(CO)2] [1]. This field has been reviewed but has not been extensively developed since the early work of Tuck and coworkers [2, 3]. [Pg.353]


See other pages where Metal dissolution titanium is mentioned: [Pg.983]    [Pg.289]    [Pg.236]    [Pg.243]    [Pg.149]    [Pg.682]    [Pg.243]    [Pg.250]    [Pg.577]    [Pg.14]    [Pg.310]    [Pg.1467]    [Pg.1600]    [Pg.983]    [Pg.563]    [Pg.1316]    [Pg.880]    [Pg.119]    [Pg.886]    [Pg.149]    [Pg.682]    [Pg.674]    [Pg.498]    [Pg.500]    [Pg.134]    [Pg.5]    [Pg.168]    [Pg.348]    [Pg.525]    [Pg.577]    [Pg.273]    [Pg.122]    [Pg.255]    [Pg.26]    [Pg.218]   
See also in sourсe #XX -- [ Pg.326 ]




SEARCH



Metal dissolution

Titanium dissolution

Titanium metal

© 2024 chempedia.info