Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Membranes redox reactions

NADH to ferricyanide, which proceeds effectively in aeorbic conditions, stops completely in anaerobic conditions. It could be supposed that in anaerobic conditions no peroxides necessary for electron transport are formed. Thus, it could be assumed that one of FMN s functions is that it maintains in mitochondrial membrane a certain optimal concentration of peroxide radicals, which are needed as catalysts of the electron transport reaction during respiration. It was shown that the formation of peroxides with the participation of FMN disappears in acid media. On the other hand, when peroxides are formed the layer adjacent to the membrane becomes enriched in protons. Hence, it follows that the peroxide formation process might possibly be a self-regulating one, the rate of which cannot rise endlessly. This circumstance once more substantiates the supposition that this process might play a very important functional role in membrane redox reactions. [Pg.136]

Stannous Sulfate. Stannous sulfate (tin(Il) sulfate), mol wt 214.75, SnSO, is a white crystalline powder which decomposes above 360°C. Because of internal redox reactions and a residue of acid moisture, the commercial product tends to discolor and degrade at ca 60°C. It is soluble in concentrated sulfuric acid and in water (330 g/L at 25°C). The solubihty in sulfuric acid solutions decreases as the concentration of free sulfuric acid increases. Stannous sulfate can be prepared from the reaction of excess sulfuric acid (specific gravity 1.53) and granulated tin for several days at 100°C until the reaction has ceased. Stannous sulfate is extracted with water and the aqueous solution evaporates in vacuo. Methanol is used to remove excess acid. It is also prepared by reaction of stannous oxide and sulfuric acid and by the direct electrolysis of high grade tin metal in sulfuric acid solutions of moderate strength in cells with anion-exchange membranes (36). [Pg.66]

Mixed potential resulting from an interfering redox reaction at membranes with finite electronic conductance... [Pg.241]

For an interfering redox reaction at an ion-selective membrane, the overpotential t B can be easily determined experimentally. It is the potential difference between the ion-selective membrane and an inert redox electrode in the same solution containing the measured ion and an interfering redox system. [Pg.242]

Some of the critical enzymes in our cells are metalloproteins, large organic molecules made up of folded polymerized chains of amino acids that also include at least one metal atom. These metalloproteins are intensely studied by biochemists, because they control life and protect against disease. They have also been used to trace evolutionary paths. The d-block metals catalyze redox reactions, form components of membrane, muscle, skin, and bone, catalyze acid-base reactions, control the flow of energy and oxygen, and carry out nitrogen fixation. [Pg.789]

The field of modified electrodes spans a wide area of novel and promising research. The work dted in this article covers fundamental experimental aspects of electrochemistry such as the rate of electron transfer reactions and charge propagation within threedimensional arrays of redox centers and the distances over which electrons can be transferred in outer sphere redox reactions. Questions of polymer chemistry such as the study of permeability of membranes and the diffusion of ions and neutrals in solvent swollen polymers are accessible by new experimental techniques. There is hope of new solutions of macroscopic as well as microscopic electrochemical phenomena the selective and kinetically facile production of substances at square meters of modified electrodes and the detection of trace levels of substances in wastes or in biological material. Technical applications of electronic devices based on molecular chemistry, even those that mimic biological systems of impulse transmission appear feasible and the construction of organic polymer batteries and color displays is close to industrial use. [Pg.81]

The membrane-separated reductant and oxidant formed upon PET can be used for accomplishment of various catalytic redox reactions which provide conversion of the chemical energy of a (D. ..A ) pair into the chemical energy of a pair of more stable species such, e.g., as H2 and O2 molecules. This stored energy can be released when necessary in the form of high potential heat or electricity via combustion of H2 + 1/2 O2 mixture in a furnace or fuel cell. [Pg.40]

From what we know today about PET in biological and synthetic membrane or layered systems, we may expect that the non-biological apparatus providing photogeneration of spatially separated one-electron reductant and oxidant is likely to be developed in a rather universal way and may be expected to accomplish in the future not only water cleavage, but also various other redox reactions, such e.g., as photochemical synthesis of ammonia via the hv... [Pg.42]

It is well known that the selective transport of ions through a mitochondrial inner membrane is attained when the oxygen supplied by the respiration oxidizes glycolysis products in mitochondria with the aid of such substances as flavin mononucleotide (FMN), fi-nicotinamide adenine dinucleotide (NADH), and quinone (Q) derivatives [1-3]. The energy that enables ion transport has been attributed to that supplied by electron transport through the membrane due to a redox reaction occurring at the aqueous-membrane interface accompanied by respiration [1-5],... [Pg.489]

Nevertheless, there is good evidence that in all purely bluelight sensitive organisms, the photoreceptor is a flavin (flavoprotein) (Table 2), which appears to be bound to membranes (plasmalemma) in a highly dichroic manner. The mechanism of sensory transduction is probably correlated with light-induced redox reactions mediated by a flavin. This observation is consistent with the fact that nearly all physiolog-... [Pg.40]

The yeast-mediated enzymatic biodegradation of azo dyes can be accomplished either by reductive reactions or by oxidative reactions. In general, reductive reactions led to cleavage of azo dyes into aromatic amines, which are further mineralized by yeasts. Enzymes putatively involved in this process are NADH-dependent reductases [24] and an azoreductase [16], which is dependent on the extracellular activity of a component of the plasma membrane redox system, identified as a ferric reductase [19]. Recently, significant increase in the activities of NADH-dependent reductase and azoreductase was observed in the cells of Trichosporon beigelii obtained at the end of the decolorization process [25]. [Pg.185]

Also ascomycetes yeast strains showed decolorizing behaviors due to extracellular reactions on polar dyes. The process occur when an alternative carbon and energy source is available. The involvement of an externally directed plasma membrane redox system was suggested in S. cerevisiae, the plasma membrane ferric reductase system participates in the extracellular reduction of azo dyes [25]. [Pg.201]

Photosystem I is a membrane pigment-protein complex in green plants, algae as well as cyanobacteria, and undergoes redox reactions by using the electrons transferred from photosystem II (PS II) [1], These membrane proteins are considered to be especially interesting in the study of monomolecular assemblies, because their structure contains hydrophilic area that can interact with the subphase as well as hydrophobic domains that can interact either with each other or with detergent and lipids [2], Moreover, studies with such proteins directly at the air-water interface are expected to be a valuable approach for their two-dimensional crystallization. [Pg.161]

S. Itoh and M. Nishimura, Rate of redox reactions related to surface potential and other surface-related parameters in biological membranes, Methods Enzymol. 125, 58-86 (1986). [Pg.270]

The catalytic effect of the type of mixed electrodes occiu s also in a ntunber of bio-redox reactions on bio-membranes and also on enzymes as shown in Fig. 11-4 ... [Pg.376]

Fig. 11-4. Catalytic redox reactions through mixed electrode mechanism (a) on bio-membranes and (b) on enzymes. Fig. 11-4. Catalytic redox reactions through mixed electrode mechanism (a) on bio-membranes and (b) on enzymes.
Studies of the cytoplasmic membranes of Ms. mazei and barkeri demonstrate that membrane-bound enzymes are involved in the corresponding redox reactions [18]. [Pg.81]

The powerful biological machinery of energy conversion proceeds via redox reactions in aqueous media that involve electron and proton transfer between molecular entities. - Nature devised concerted sequences of these processes that generate electrochemical potential gradients across cell membranes and thereby enable the storage and the release of electrical energy. [Pg.344]

M. Fabian and co-workers have studied the protein s role in internal electron transfer to the catalytic center of cytochrome c oxidase using stopped-flow kinetics. Mitochondrial cytochrome c oxidase, CcO, an enzyme that catalyzes the oxidation of ferrocytochrome c by dioxygen, is discussed more fully in Section 7.8. In the overall process, O2 is reduced to water, requiring the addition of four electrons and four protons to the enzyme s catalytic center. Electrons enter CcO from the cytosolic side, while protons enter from the matrix side of the inner mitochondrial membrane. This redox reaction. [Pg.143]

Again, points on the curve were the measured acrolein production rates, and the line is the predicted production rate based on the current and the stoichiometry according to eq 9. At higher conversions, we observed significant amounts of CO2 and water, sufficient to explain the difference between the acrolein production and the current. It should be noted that others have also observed the electrochemical production of acrolein in a membrane reactor with molybdena in the anode. The selective oxidation of propylene to acrolein with the Cu—molybdena— YSZ anode can only be explained if molybdena is undergoing a redox reaction, presumably being oxidized by the electrolyte and reduced by the fuel. By inference, ceria is also likely acting as a catalyst, but for total oxidation. [Pg.620]

By its chemical nature, the very thin dry layer of glass permits ion exchange without any possibility of electrochemical redox reactions. If the membrane is a sufficiently thin layer, one can achieve millisecond response times to changes in pH, and these properties can be put to full advantage with rapid mixing devices to study chemical reactions with half-lives in the 5-10 msec range. [Pg.547]


See other pages where Membranes redox reactions is mentioned: [Pg.40]    [Pg.241]    [Pg.243]    [Pg.151]    [Pg.641]    [Pg.29]    [Pg.501]    [Pg.513]    [Pg.522]    [Pg.160]    [Pg.186]    [Pg.226]    [Pg.594]    [Pg.126]    [Pg.259]    [Pg.3]    [Pg.3]    [Pg.221]    [Pg.221]    [Pg.259]    [Pg.41]    [Pg.361]    [Pg.10]    [Pg.11]    [Pg.383]    [Pg.61]    [Pg.336]    [Pg.132]   
See also in sourсe #XX -- [ Pg.540 ]




SEARCH



Membrane reactions

Membrane redox

© 2024 chempedia.info