Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Membrane transporters model systems

Transport Models. Many mechanistic and mathematical models have been proposed to describe reverse osmosis membranes. Some of these descriptions rely on relatively simple concepts others are far more complex and require sophisticated solution techniques. Models that adequately describe the performance of RO membranes are important to the design of RO processes. Models that predict separation characteristics also minimize the number of experiments that must be performed to describe a particular system. Excellent reviews of membrane transport models and mechanisms are available (9,14,25-29). [Pg.146]

Combined solution-diffusion film theory models have been presented already in several publications on aqueous systems however, either 100% rejection of the solute is assumed or detailed experimental flux and rejection results are required in order to find parameters by nonlinear parameter estimation (Murthy and Gupta, 1997). Consequently, it is difficult to apply these models for predictive purposes. Peeva et al. (2004) presented the first consideration of concentration polarization in OSN. They coupled the solution-diffusion membrane transport model, Eq. (16.4), with film theory to describe flux and rejection of toluene/ docosane and tolune/TOABr binary mixtures. This approach was able to integrate concentration polarization and nonideal solution behavior into OSN design models and predict fluxes over a wide range of solvent mixtures from a limited data set of the pure solvent fluxes. The only parameters to be estimated, other than physical properties, are the mass transfer coefficients, which may be measured, and the permeabUilies, which may... [Pg.461]

All of the transport systems examined thus far are relatively large proteins. Several small molecule toxins produced by microorganisms facilitate ion transport across membranes. Due to their relative simplicity, these molecules, the lonophore antibiotics, represent paradigms of the mobile carrier and pore or charmel models for membrane transport. Mobile carriers are molecules that form complexes with particular ions and diffuse freely across a lipid membrane (Figure 10.38). Pores or channels, on the other hand, adopt a fixed orientation in a membrane, creating a hole that permits the transmembrane movement of ions. These pores or channels may be formed from monomeric or (more often) multimeric structures in the membrane. [Pg.321]

In the biological field, much attention has been directed toward the transport phenomena through membrane. Although the function of some natural ionophores has been known, the investigation of active and selective transport of ions using the artificial ionophores in the simple model systems may be important to simulate the biological systems and clarify the transport behaviour of natural membranes. [Pg.57]

With the adequacy of lipid bilayer membranes as models for the basic structural motif and hence for the ion transport barrier of biological membranes, studies of channel and carrier ion transport mechanisms across such membranes become of central relevance to transport across cell membranes. The fundamental principles derived from these studies, however, have generality beyond the specific model systems. As noted above and as will be treated below, it is found that selective transport... [Pg.179]

The above iso-pH measurements are based on the 2% DOPC/dodecane system (model 1.0 over pH 3-10 range). Another membrane model was also explored by us. Table 7.16 lists iso-pH effective permeability measurements using the soy lecithin (20% wt/vol in dodecane) membrane PAMPA (models 17.1, 24.1, and 25.1) The negative membrane charge, the multicomponent phospholipid mixture, and the acceptor sink condition (Table 7.1) result in different intrinsic permeabilities for the probe molecules. Figure 7.40 shows the relationship between the 2% DOPC and the 20% soy iso-pH PAMPA systems for ketoprofen. Since the intrinsic permeability of ketoprofen in the soy lecithin membrane is about 20 times greater than in DOPC membrane, the flat diffusion-limited transport region of the log Pe... [Pg.209]

An exciting area in inclusion chemistry is the design and synthesis of molecules which could behave as ion channels. Future developments in this field offer the potential for developing new synthetic antibiotic molecules, model systems for investigating transport across membranes, and ion channels specific for particular ions. Such studies are so far only in their infancy. [Pg.188]

Also when resorting to heuristic rate equations or other approximative schemes, the construction of detailed kinetic models necessitates quantitative knowledge about the kinetic properties of the involved enzymes and membrane transporters. Notwithstanding the formidable progress in experimental accessibility of system variables, detailed in Sections IV and VI, for most metabolic systems such quantitative information is only scarcely available. [Pg.188]

This permeability barrier shows selectivity in that small hydrophobic molecules can partition into and diffuse across the lipid bilayer of the cell membrane, whereas small hydrophilic molecules can only diffuse between cells (i.e., through the intercellular junctions). In addition, the presence of uptake and efflux transporters complicates our ability to predict intestinal permeability based on physicochemical properties alone because transporters may increase or decrease absorptive flux. The complexity of the permeability process makes it difficult to elucidate permeability pathways in complex biological model systems such as animals and tissues. For this reason, cultured cells in general, and Caco-2 cells in particular, have been used extensively to investigate the role of specific permeability pathways in drug absorption. [Pg.172]

The driving force of the transport of salts, proteins, etc., through the cell membrane from the nuclens to the body fluids, and vice versa, is a complicated biochemical process. As far as is known, this field has not been explored by traditional solution chemists, although a detailed analysis of these transfer processes indicates many similarities with solvent extraction processes (equilibrium as well as kinetics). It is possible that studies of such simpler model systems could contribute to the understanding of the more complicated biochemical processes. [Pg.30]

Polar Cell Systems for Membrane Transport Studies Direct current electrical measurement in epithelia steady-state and transient analysis, 171, 607 impedance analysis in tight epithelia, 171, 628 electrical impedance analysis of leaky epithelia theory, techniques, and leak artifact problems, 171, 642 patch-clamp experiments in epithelia activation by hormones or neurotransmitters, 171, 663 ionic permeation mechanisms in epithelia biionic potentials, dilution potentials, conductances, and streaming potentials, 171, 678 use of ionophores in epithelia characterizing membrane properties, 171, 715 cultures as epithelial models porous-bottom culture dishes for studying transport and differentiation, 171, 736 volume regulation in epithelia experimental approaches, 171, 744 scanning electrode localization of transport pathways in epithelial tissues, 171, 792. [Pg.450]

INTESTINE Characterization of a membrane potassium ion conductance in intestinal secretory cells using whole cell patch-clamp and calcium-sensitive dye techniques, 192, 309 isolation of intestinal epithelial cells and evaluation of transport functions, 192, 324 isolation of enterocyte membranes, 192, 341 established intestinal cell lines as model systems for electrolyte transport studies, 192, 354 sodium chloride transport pathways in intestinal membrane vesicles, 192, 389 advantages and limitations of vesicles for the characterization and the kinetic analysis of transport systems, 192, 409 isolation and reconstitution of the sodium-de-pendent glucose transporter, 192, 438 calcium transport by intestinal epithelial cell basolateral membrane, 192, 448 electrical measurements in large intestine (including cecum, colon, rectum), 192, 459... [Pg.452]

The model system for biological membranes is the so-called artificial lipid membrane made of two monolayers of lipid between two (aqueous) electrolyte solutions. The thickness of such a membrane can vary over a wide range and this introduces some ambiguity in deciding what kind of model should be the basis for the mathematical description of ion transport and other properties. Two extreme concepts can be distinguished. [Pg.279]

Varying the side groups X in 27b affects both the stability and selectivity of the complexes (lateral discrimination), and allows the receptor-substrate interactions in biological systems to be modelled, for instance, the interaction between nicotinamide and tryptophan [2.109b]. One may attach to 27b amino acid residues (leading to parallel peptides [2.109] as in 27c), nucleic acid bases or nucleosides, saccharides, etc. The structural features of 27 and its remarkable binding properties make it an attractive unit for the construction of macropolycyclic multisite receptors, molecular catalysts, and carriers for membrane transport. Such extensions require sepa-... [Pg.27]

Liquid crystals are widely believed to be closely related to membranes of living cells and have been used as model systems in studies to understand membrane behavior. Among dynamic processes of interest here are transport of various species across membranes and various motions and deformations of membranes. [Pg.93]

The widespread interest in transport across membranes of living cells has led to studies of diffusion in lyotropic liquid crystals. Biological membranes are generally thought to contain single bimolecular leaflets of phospholipid material, leaflets which are like the large, flat micelles of lamellar liquid crystals. No effort is made here to review the literature on transport either across actual cell membranes or across single bimolecular leaflets (black lipid films) which have often been used recently as model systems for membrane studies. Instead, experiments where lamellar liquid crystals have been used as model systems are discussed. [Pg.100]

We note that earlier research focused on the similarities of defect interaction and their motion in block copolymers and thermotropic nematics or smectics [181, 182], Thermotropic liquid crystals, however, are one-component homogeneous systems and are characterized by a non-conserved orientational order parameter. In contrast, in block copolymers the local concentration difference between two components is essentially conserved. In this respect, the microphase-separated structures in block copolymers are anticipated to have close similarities to lyotropic systems, which are composed of a polar medium (water) and a non-polar medium (surfactant structure). The phases of the lyotropic systems (such as lamella, cylinder, or micellar phases) are determined by the surfactant concentration. Similarly to lyotropic phases, the morphology in block copolymers is ascertained by the volume fraction of the components and their interaction. Therefore, in lyotropic systems and in block copolymers, the dynamics and annihilation of structural defects require a change in the local concentration difference between components as well as a change in the orientational order. Consequently, if single defect transformations could be monitored in real time and space, block copolymers could be considered as suitable model systems for studying transport mechanisms and phase transitions in 2D fluid materials such as membranes [183], lyotropic liquid crystals [184], and microemulsions [185],... [Pg.63]


See other pages where Membrane transporters model systems is mentioned: [Pg.32]    [Pg.32]    [Pg.178]    [Pg.749]    [Pg.22]    [Pg.71]    [Pg.76]    [Pg.117]    [Pg.160]    [Pg.68]    [Pg.286]    [Pg.222]    [Pg.31]    [Pg.86]    [Pg.97]    [Pg.342]    [Pg.370]    [Pg.40]    [Pg.67]    [Pg.177]    [Pg.340]    [Pg.327]    [Pg.126]    [Pg.87]    [Pg.113]    [Pg.118]    [Pg.304]    [Pg.555]    [Pg.129]    [Pg.262]    [Pg.223]    [Pg.841]    [Pg.132]    [Pg.27]   
See also in sourсe #XX -- [ Pg.59 , Pg.60 ]




SEARCH



Membrane model

Membrane modeling

Membranes modelling

Model membrane systems

Modelling transport

Systemic Transport

Transport modeling

Transport models

Transport systems

Transport systems/transporters

Transport systems/transporters membrane

© 2024 chempedia.info