Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Membrane transport diffusion

FACILITATED DIFFUSION Membrane transporters may facilitate diffusion of ions and organic compounds across the plasma membrane this facilitated diffusion does not require energy input. Just as in passive diffusion, the transport of ionized and nonionized compounds across the plasma membrane occurs down their electrochemical potential gradient. Therefore, steady state will be achieved when the electrochemical potentials of the compound on both sides of the membrane become equal. [Pg.29]

Combined solution-diffusion film theory models have been presented already in several publications on aqueous systems however, either 100% rejection of the solute is assumed or detailed experimental flux and rejection results are required in order to find parameters by nonlinear parameter estimation (Murthy and Gupta, 1997). Consequently, it is difficult to apply these models for predictive purposes. Peeva et al. (2004) presented the first consideration of concentration polarization in OSN. They coupled the solution-diffusion membrane transport model, Eq. (16.4), with film theory to describe flux and rejection of toluene/ docosane and tolune/TOABr binary mixtures. This approach was able to integrate concentration polarization and nonideal solution behavior into OSN design models and predict fluxes over a wide range of solvent mixtures from a limited data set of the pure solvent fluxes. The only parameters to be estimated, other than physical properties, are the mass transfer coefficients, which may be measured, and the permeabUilies, which may... [Pg.461]

Materials may be absorbed by a variety of mechanisms. Depending on the nature of the material and the site of absorption, there may be passive diffusion, filtration processes, faciHtated diffusion, active transport and the formation of microvesicles for the cell membrane (pinocytosis) (61). EoUowing absorption, materials are transported in the circulation either free or bound to constituents such as plasma proteins or blood cells. The degree of binding of the absorbed material may influence the availabiHty of the material to tissue, or limit its elimination from the body (excretion). After passing from plasma to tissues, materials may have a variety of effects and fates, including no effect on the tissue, production of injury, biochemical conversion (metaboli2ed or biotransformed), or excretion (eg, from liver and kidney). [Pg.230]

The concentration boundary layer forms because of the convective transport of solutes toward the membrane due to the viscous drag exerted by the flux. A diffusive back-transport is produced by the concentration gradient between the membranes surface and the bulk. At equiUbrium the two transport mechanisms are equal to each other. Solving the equations leads to an expression of the flux ... [Pg.296]

From a thermodynamic and kinetic perspective, there are only three types of membrane transport processes passive diffusion, faeilitated diffusion, and active transport. To be thoroughly appreciated, membrane transport phenomena must be considered in terms of thermodynamics. Some of the important kinetic considerations also will be discussed. [Pg.297]

Passive diffusion is the simplest transport process. In passive diffusion, the transported species moves across the membrane in the thermodynamically favored direction without the help of any specific transport system/molecule. For an uncharged molecule, passive diffusion is an entropic process, in which movement of molecules across the membrane proceeds until the concentration of the substance on both sides of the membrane is the same. For an uncharged molecule, the free energy difference between side 1 and side 2 of a membrane (Figure 10.1) is given by... [Pg.297]

All of the transport systems examined thus far are relatively large proteins. Several small molecule toxins produced by microorganisms facilitate ion transport across membranes. Due to their relative simplicity, these molecules, the lonophore antibiotics, represent paradigms of the mobile carrier and pore or charmel models for membrane transport. Mobile carriers are molecules that form complexes with particular ions and diffuse freely across a lipid membrane (Figure 10.38). Pores or channels, on the other hand, adopt a fixed orientation in a membrane, creating a hole that permits the transmembrane movement of ions. These pores or channels may be formed from monomeric or (more often) multimeric structures in the membrane. [Pg.321]

PLASMA MEMBRANES ARE INVOLVED IN FACILITATED DIFFUSION, ACTIVE TRANSPORT, OTHER PROCESSES... [Pg.426]

The above iso-pH measurements are based on the 2% DOPC/dodecane system (model 1.0 over pH 3-10 range). Another membrane model was also explored by us. Table 7.16 lists iso-pH effective permeability measurements using the soy lecithin (20% wt/vol in dodecane) membrane PAMPA (models 17.1, 24.1, and 25.1) The negative membrane charge, the multicomponent phospholipid mixture, and the acceptor sink condition (Table 7.1) result in different intrinsic permeabilities for the probe molecules. Figure 7.40 shows the relationship between the 2% DOPC and the 20% soy iso-pH PAMPA systems for ketoprofen. Since the intrinsic permeability of ketoprofen in the soy lecithin membrane is about 20 times greater than in DOPC membrane, the flat diffusion-limited transport region of the log Pe... [Pg.209]

Phospholipids, which are one of the main structural components of the membrane, are present primarily as bilayers, as shown by molecular spectroscopy, electron microscopy and membrane transport studies (see Section 6.4.4). Phospholipid mobility in the membrane is limited. Rotational and vibrational motion is very rapid (the amplitude of the vibration of the alkyl chains increases with increasing distance from the polar head). Lateral diffusion is also fast (in the direction parallel to the membrane surface). In contrast, transport of the phospholipid from one side of the membrane to the other (flip-flop) is very slow. These properties are typical for the liquid-crystal type of membranes, characterized chiefly by ordering along a single coordinate. When decreasing the temperature (passing the transition or Kraft point, characteristic for various phospholipids), the liquid-crystalline bilayer is converted into the crystalline (gel) structure, where movement in the plane is impossible. [Pg.449]

Under certain conditions, the transfer of various molecules across the membrane is relatively easy. The membrane must contain a suitable transport mediator , and the process is then termed facilitated membrane transport . Transport mediators permit the transported hydrophilic substance to overcome the hydrophobic regions in the membrane. For example, the transport of glucose into the red blood cells has an activation energy of only 16 kJ mol-1—close to simple diffusion. [Pg.455]

Membrane transport represents a major application of mass transport theory in the pharmaceutical sciences [4], Since convection is not generally involved, we will use Fick s first and second laws to find flux and concentration across membranes in this section. We begin with the discussion of steady diffusion across a thin film and a membrane with or without aqueous diffusion resistance, followed by steady diffusion across the skin, and conclude this section with unsteady membrane diffusion and membrane diffusion with reaction. [Pg.46]

The flux vector accounts for mass transport by both convection (i.e., blood flow, interstitial fluid flow) and conduction (i.e., molecular diffusion), whereas S describes membrane transport between adjacent compartments and irreversible elimination processes. For the three-subcompartment organ model presented in Figure 2, with concentration both space- and time-dependent, the conservation equations are... [Pg.89]

Precellular solute ionization dictates membrane permeability dependence on mucosal pH. Therefore, lumenal or cellular events that affect mucosal microclimate pH may alter the membrane transport of ionizable solutes. The mucosal microclimate pH is defined by a region in the neighborhood of the mucosal membrane in which pH is lower than in the lumenal fluid. This is the result of proton secretion by the enterocytes, for which outward diffusion is slowed by intestinal mucus. (In fact, mucosal secretion of any ion coupled with mucus-restricted diffusion will provide an ionic microclimate.) Important differences in solute transport between experimental systems may be due to differences in intestinal ions and mucus secretion. It might be anticipated that microclimate pH effects would be less pronounced in epithelial cell culture (devoid of goblet cells) transport studies than in whole intestinal tissue. [Pg.174]

It has been demonstrated that transport rate and selectivity may be modelled using the basic concepts of Fick s law of diffusion (Behr, Kirch Lehn, 1985). Analyses of this type allow a greater appreciation of the interplay of factors influencing such membrane transport phenomena, and enable a clear theoretical differentiation between diffusion-limited and complexation rate-limited cases. [Pg.230]

Many drugs have been recognized to cross the intestinal epithelial cells via passive diffusion, thus their lipophilicity has been considered important. However, as described above, recent studies have demonstrated that a number of drug transporters including uptake and efflux systems determine the membrane transport process. In this chapter, we provide an overview of the basic characteristics of major drug transporters responsible not only for absorption but also for disposition and excretion in order to delineate the impact of drug transport proteins on pharmacokinetics. [Pg.560]

Passive transcellular transport across the intestinal epithelium involves three discrete steps (1) uptake across the apical membrane, (2) diffusion through the cytoplasm, and (3) efflux across the basolateral membrane. Occasionally, drug molecules without favorable physicochemical properties traverse the intestinal epithelium using endogenous membrane transporters.6-8 In addition, the intestinal mucosa, with its numerous drug-metabolizing enzymes and efflux transporters, such as P-glycoprotein (Pgp), functions as a biochemical barrier.9... [Pg.162]


See other pages where Membrane transport diffusion is mentioned: [Pg.146]    [Pg.88]    [Pg.295]    [Pg.76]    [Pg.324]    [Pg.466]    [Pg.1157]    [Pg.115]    [Pg.153]    [Pg.154]    [Pg.826]    [Pg.48]    [Pg.435]    [Pg.109]    [Pg.22]    [Pg.85]    [Pg.179]    [Pg.192]    [Pg.358]    [Pg.167]    [Pg.246]    [Pg.360]    [Pg.319]    [Pg.54]    [Pg.74]    [Pg.97]    [Pg.9]    [Pg.86]    [Pg.485]    [Pg.422]    [Pg.453]    [Pg.168]   
See also in sourсe #XX -- [ Pg.539 ]




SEARCH



Cell membranes diffusion/passive transport

Diffusion transport equation through membrane

Diffusion transporters

Membrane diffusivity

Membrane transport facilitated diffusion

Membrane transport passive diffusion

Membrane transport simple diffusion

Membranes diffusion

Solution diffusion model transport equation through membrane

Transport across membranes simple diffusion

Transport diffusive

Transport mechanism, membranes surface diffusion

© 2024 chempedia.info