Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrophilic molecule

Some authors have suggested the use of fluorene polymers for this kind of chromatography. Fluorinated polymers have attracted attention due to their unique adsorption properties. Polytetrafluoroethylene (PTFE) is antiadhesive, thus adsorption of hydrophobic as well as hydrophilic molecules is low. Such adsorbents possess extremely low adsorption activity and nonspecific sorption towards many compounds [109 111]. Fluorene polymers as sorbents were first suggested by Hjerten [112] in 1978 and were tested by desalting and concentration of tRN A [113]. Recently Williams et al. [114] presented a new fluorocarbon sorbent (Poly F Column, Du Pont, USA) for reversed-phase HPLC of peptides and proteins. The sorbent has 20 pm in diameter particles (pore size 30 nm, specific surface area 5 m2/g) and withstands pressure of eluent up to 135 bar. There is no limitation of pH range, however, low specific area and capacity (1.1 mg tRNA/g) and relatively low limits of working pressure do not allow the use of this sorbent for preparative chromatography. [Pg.167]

A unique method of formulating delivery systems based on starch/ PLA systems was studied (138). In that approach, the goal was to provide a better matrix for delivery of high molecular weight hydrophilic molecules. A hydrophilic material, starch, was combined through graft polymerization to PLA. The carbolactic polymers were then used to entrap bovine serum albumin in microspheres. [Pg.30]

Gram-negative baeteria possess an outer membrane which can act as a barrier to the penetration of antibiotics. The main route of entry of hydrophilic molecules is via the porins, whieh form pores in the outer membrane. Qualitative or quantitative alterations in these porins can result in the decreased accumulation of antibiotic. [Pg.185]

The negative ClogP term shows that highly hydrophilic molecules for this data set would present better inhibitory activities against topo I. Two compounds (Ri = R3 = R4 = R5 = H, R2 = NO2 and Ri = R3 = R4 = R5 = H, R2 = F) in Table 4 for the development of QSAR Eq. 6 were deemed to be outliers on the basis of their deviation (>2s). The outlier (Ri = R3 = R4 = R5 = H, R2 = NO2) is much more active than expected, by three times the standard deviation. This may be due to the formation of nitro anion radicals that interact with DNA [48]. The other derivative (Ri = R3 = R4 = R5 = H, R2 = F) is... [Pg.54]

Membrane Rate-Limiting Transport (Hydrophilic Molecules)... [Pg.76]

Centrifugal partition chromatography (CPC) has been used to characterize the partitioning behavior of hydrophilic molecules, where log D values as low as —3 can be obtained [371,377-379]. It is not as popular a method as it used to be, apparently due to instrumental challenges. Cyclic voltammetry (CV) has become the new method used to get access to very low log D values, with partition coefficients reported as low as —9.8 [261,269,362]. [Pg.55]

Figure 7.22b is a similar plot for the other two lipids considered olive oil (unfilled symbols) and octanol (filled symbols). Both lipids can be described by a bilinear relationship, patterned after the case in Fig. 7.19d [Eq. (7.44)]. Octanol shows a declining log Pe relationship for very lipophilic molecules (log Kd > 2). The probe set of 32 molecules does not have examples of very hydrophilic molecules, with log Kd < —2, so the expected hydrophilic ascending part of the solid curve in Fig. 7.22b is not fully shown. Nevertheless, the shape of the plot is very similar to that reported by Camenisch et al. [546], shown in Fig. 7.8c. The UWL in the latter study (stirred solutions) is estimated to be 460 pm (Fig. 7.8b), whereas the corresponding value in unstirred 96-well microtiter late assay is about 2300 pm. For this reason, the high point in Fig. 7.22b is 16 x 10-6 cm/s, whereas it is 70 x 10 6 cm/s in Fig. 7.8c. Figure 7.22b is a similar plot for the other two lipids considered olive oil (unfilled symbols) and octanol (filled symbols). Both lipids can be described by a bilinear relationship, patterned after the case in Fig. 7.19d [Eq. (7.44)]. Octanol shows a declining log Pe relationship for very lipophilic molecules (log Kd > 2). The probe set of 32 molecules does not have examples of very hydrophilic molecules, with log Kd < —2, so the expected hydrophilic ascending part of the solid curve in Fig. 7.22b is not fully shown. Nevertheless, the shape of the plot is very similar to that reported by Camenisch et al. [546], shown in Fig. 7.8c. The UWL in the latter study (stirred solutions) is estimated to be 460 pm (Fig. 7.8b), whereas the corresponding value in unstirred 96-well microtiter late assay is about 2300 pm. For this reason, the high point in Fig. 7.22b is 16 x 10-6 cm/s, whereas it is 70 x 10 6 cm/s in Fig. 7.8c.
Figure 7.22b shows that hydrophilic molecules, those with log Kj < 1, are much more permeable in octanol than in olive oil. The same may be said in comparison to 2% DOPC and dodecane. Octanol appears to enhance the permeability of hydrophilic molecules, compared to that of DOPC, dodecane, and olive oil. This is dramatically evident in Fig. 7.7, and is confirmed in Figs. 7.8c and 7.22b. The mechanism is not precisely known, but it is reasonable to suspect a shuttle service may be provided by the water clusters in octanol-based PAMPA (perhaps like an inverted micelle equivalent of endocytosis). Thus, it appears that charged molecules can be substantially permeable in the octanol PAMPA. However, do charged molecules permeate phospholipid bilayers to any appreciable extent We will return to this question later, and will cite evidence at least for a partial answer. [Pg.168]

With respect to the size and charge selectivity of paracellular pathways, equivalent pore theory has been utilized to calculate an effective radius based on the membrane transport of uncharged hydrophilic molecules, while equivalent circuit theory has been used to separate mediated from paracellular membrane transport of small ions. The term equivalent should be emphasized, as selectivity parameters are obtained from membrane transport data, so phenomenological information is used to quantitate the magnitude of aqueous pathways... [Pg.177]

Method 2 Introducing a hydrophobic carotenoid to a hydrophilic molecule... [Pg.35]

In amphiphilic molecules, the polar, hydrophilic part is known as the head and the non-polar, hydrophobic part the tail of the molecule. Hydrophilic molecules, or parts of molecules, try to interact with polar water molecules, while hydrophobic moieties try to avoid them. [Pg.265]

The rat intestinal cell line IEC-18 has been evaluated as a model to study small intestinal epithelial permeability. This cell line forms very leaky monolayers with TER of 50 n cm2 and permeability to mannitol of 8 x 10-6 cm s 1. The IEC-18 model was proposed to be a better model than the Caco-2 monolayers for evaluating the small intestinal paracellular permeation of hydrophilic molecules. However, the leakier paracellular pathway is related to the poor differentiation level of the cells and an undeveloped paracellular barrier lacking peri-junctional actin-belt. In addition, due to the poor differentiation the cells have minute expression of transporters and are therefore not useful for studies of carrier-mediated transport [82, 84]... [Pg.99]

All of the aliphatic and aromatic hydrophobic residues often are located at the interior of protein molecules or in areas that interact with other non-polar structures such as lipids. They usually form the hydrophobic core of proteins and are not readily accessible to water or other hydrophilic molecules. [Pg.6]

The most useful form of liposomes for bioconjugate applications consists of small, spherical ULVs that possess layers of hydrophilic head groups on their inner and outer surfaces. The inside of each vesicle can contain hydrophilic molecules that are protected from the outer environment by the lipid shell. The outside surface can be derivatized to contain covalently attached molecules designed to target the liposome for specific interactions. [Pg.861]

Computational models for blood-brain-barrier penetration have been well reviewed in detail by Clark [36]. Penetration of the blood-brain-barrier (BBB) via passive diffusion is dependent upon the hydrophilicity and lipophilicity of a molecule. However, the BBB is a thicker, more lipophilic membrane than the intestinal membrane. Kelder et al. [37] showed that very few of 776 orally administered CNS drugs had PSA >90, while a substantial fraction of 1590 orally administered non-CNS had PSA >90. These results demonstrate the poor BBB penetration by hydrophilic molecules. [Pg.457]

In many biological systems the biological membrane is a type of surface on which hydrophilic molecules can be attached. Then a microenvironment is created in which the ionic composition can be tuned in a controlled way. Such a fluffy polymer layer is sometimes called a slimy layer. Here we report on the first attempt to generate a realistic slimy layer around the bilayer. This is done by grafting a polyelectrolyte chain on the end of a PC lipid molecule. When doing so, it was found that the density in which one can pack such a polyelectrolyte layer depends on the size of the hydrophobic anchor. For this reason, we used stearoyl Ci8 tails. The results of such a calculation are given in Figure 26. [Pg.84]

Typically, functional porins are homotrimers, which assemble from monomers and then integrate into the outer membrane. The general porins, water-filled diffusion pores, allow the passage of hydrophilic molecules up to a size of approximately 600 Daltons. They do not show particular substrate specificity, but display some selectivity for either anions or cations, and some discrimination with respect to the size of the solutes. The first published crystal structure of a bacterial porin was that of R. capsulatus [48]. Together with the atomic structures of two proteins from E. coli, the phosphate limitation-induced anion-selective PhoE porin and the osmotically regulated cation-selective OmpF porin, a common scheme was found [49]. Each monomer consists of 16 (3-strands spanning the outer membrane and forming a barrel-like structure. [Pg.285]


See other pages where Hydrophilic molecule is mentioned: [Pg.171]    [Pg.73]    [Pg.105]    [Pg.214]    [Pg.422]    [Pg.341]    [Pg.147]    [Pg.268]    [Pg.270]    [Pg.169]    [Pg.76]    [Pg.267]    [Pg.422]    [Pg.435]    [Pg.510]    [Pg.56]    [Pg.78]    [Pg.120]    [Pg.126]    [Pg.155]    [Pg.190]    [Pg.49]    [Pg.346]    [Pg.422]    [Pg.120]    [Pg.5]    [Pg.84]    [Pg.400]    [Pg.10]    [Pg.146]    [Pg.21]    [Pg.288]   
See also in sourсe #XX -- [ Pg.87 ]

See also in sourсe #XX -- [ Pg.26 , Pg.28 ]

See also in sourсe #XX -- [ Pg.9 ]

See also in sourсe #XX -- [ Pg.1246 ]

See also in sourсe #XX -- [ Pg.57 ]

See also in sourсe #XX -- [ Pg.289 ]

See also in sourсe #XX -- [ Pg.10 , Pg.30 ]

See also in sourсe #XX -- [ Pg.366 , Pg.438 ]

See also in sourсe #XX -- [ Pg.366 , Pg.438 ]

See also in sourсe #XX -- [ Pg.26 ]




SEARCH



Encapsulation hydrophilic molecules

Hydrophilic interactions, self-assembled molecules

Hydrophilic interactions, self-assembled molecules peptides

Membrane Rate-Limiting Transport (Hydrophilic Molecules)

Molecules hydrophilic membrane

Polar molecule hydrophilic group effect

Small molecule hydrophilic glasses

© 2024 chempedia.info