Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Membrane module selection

Module Selection. The choice of the appropriate membrane module for a particular membrane separation balances a number of factors. The principal factors that enter into this decision are Hsted in Table 2. [Pg.74]

A second factor determining module selection is resistance to fouling. Membrane fouling is a particularly important problem in Hquid separations such as reverse osmosis and ultrafiltration. In gas separation appHcations, fouling is more easily controlled. Hollow-fine fibers are notoriously prone to fouling and can only be used in reverse osmosis appHcations if extensive, costiy feed-solution pretreatment is used to remove ah. particulates. These fibers caimot be used in ultrafiltration appHcations at ah. [Pg.74]

Membrane module network design, in reverse osmosis, 21 666 Membrane modules, 15 818-824 21 636 hollow-fiber, 15 819-821, 823 plate-and-frame, 15 821 selecting, 15 821-824 spiral-wound, 15 818-819, 823-824 tubular, 15 821... [Pg.561]

The geometries for asymmetric mixed-matrix membranes include flat sheets, hollow fibers and thin-fihn composites. The flat sheet asymmetric mixed-matrix membranes are formed into spirally wound modules and the hollow fiber asymmetric mixed-matrix membranes are formed into hollow fiber modules. The thin-film composite mixed-matrix membranes can be fabricated into either spirally wound or hollow fiber modules. The thin-film composite geometry of mixed-matrix membranes enables selection of different membrane materials for the support layer and low-cost production of asymmetric mixed-matrix membranes utilizing a relatively high-cost zeolite/polymer separating layer on the support layer. [Pg.343]

Cabral and coworkers [253] have investigated the batch mode synthesis of a dipeptide acetyl phenylalanine leucinamide (AcPhe-Leu-NH2) catalyzed by a-chymotrypsin in a ceramic ultrafiltration membrane reactor using a TTAB/oc-tanol/heptane reverse micellar system. Separation of the dipeptide was achieved by selective precipitation. Later on the same group successfully synthesized the same dipeptide in the same reactor system in a continuous mode [254] with high yields (70-80%) and recovery (75-90%). The volumetric production was as high as 4.3 mmol peptide/l/day with a purity of 92%. The reactor was operated for seven days continuously without any loss of enzyme activity. Hakoda et al. [255] proposed an electro-ultrafiltration bioreactor for separation of RMs containing enzyme from the product stream. A ceramic membrane module was used to separate AOT-RMs containing lipase from isooctane. Application of an electric field enhanced the ultrafiltration efficiency (flux) and it further improved when the anode and cathode were placed in the permeate and the reten-tate side respectively. [Pg.165]

Design of the membrane module system involves selection of the membrane material the module geometry, eg, spiral-wound or hollow-fiber product flow rate and concentration solvent recovery operating pressure and the minimum tolerable flux (9,11). The effects of these variables can be obtained from laboratory or pilot experiments using different membranes and modules. The membrane module as well as the solvent recovery can be chosen to minimize fouling. Spiral-wound modules are widely used because these offer both high surface area as well as a lower fouling potential. [Pg.155]

Several factors contribute to the successful fabrication of a high-performance membrane module. First, membrane materials with the appropriate chemical, mechanical and permeation properties must be selected this choice is very process-specific. However, once the membrane material has been selected, the technology required to fabricate this material into a robust, thin, defect-free membrane and then to package the membrane into an efficient, economical, high-surface-area module is similar for all membrane processes. Therefore, this chapter focuses on methods of forming membranes and membrane modules. The criteria used to select membrane materials for specific processes are described in the chapters covering each application. [Pg.89]

The diameter of hollow fibers varies over a wide range, from 50 to 3000 xm. Fibers can be made with a uniformly dense structure, but preferably are formed as a microporous structure having a dense selective layer on either the outside or the inside surface. The dense surface layer can be either integral with the fiber or a separate layer coated onto the porous support fiber. Many fibers must be packed into bundles and potted into tubes to form a membrane module modules with a surface area of even a few square meters require many kilometers of fibers. Because a module must contain no broken or defective fibers, hollow fiber production requires high reproducibility and stringent quality control. [Pg.133]

The technology to fabricate ultrathin high-performance membranes into high-surface-area membrane modules has steadily improved during the modem membrane era. As a result the inflation-adjusted cost of membrane separation processes has decreased dramatically over the years. The first anisotropic membranes made by Loeb-Sourirajan processes had an effective thickness of 0.2-0.4 xm. Currently, various techniques are used to produce commercial membranes with a thickness of 0.1 i m or less. The permeability and selectivity of membrane materials have also increased two to three fold during the same period. As a result, today s membranes have 5 to 10 times the flux and better selectivity than membranes available 30 years ago. These trends are continuing. Membranes with an effective thickness of less than 0.05 xm have been made in the laboratory using advanced composite membrane preparation techniques or surface treatment methods. [Pg.154]

Equation (4.9) shows that concentration polarization increases exponentially as the total volume flow Jv through the membrane increases. This is one of the reasons why modem spiral-wound reverse osmosis membrane modules are operated at low pressures. Modem membranes have two to five times the water permeability, at equivalent salt selectivities, of the first-generation cellulose acetate reverse osmosis membranes. If membrane modules containing these new membranes were operated at the same pressures as early cellulose acetate modules, two to five times the desalted water throughput could be achieved with the same... [Pg.170]

The benefit obtained from counter-flow depends on the particular separation, but it can often be substantial, particularly in gas separation and per-vaporation processes. A comparison of cross-flow, counter-flow, and counter-flow/sweep for the same membrane module used to dehydrate natural gas is shown in Figure 4.18. Water is a smaller molecule and much more condensable than methane, the main component of natural gas, so membranes with a water/methane selectivity of 400-500 are readily available. In the calculations shown in Figure 4.18, the membrane is assumed to have a pressure-normalized... [Pg.185]

Both Mitsui [26] and Sulzer [27] have commercialized these membranes for dehydration of alcohols by pervaporation or vapor/vapor permeation. The membranes are made in tubular form. Extraordinarily high selectivities have been reported for these membranes, and their ceramic nature allows operation at high temperatures, so fluxes are high. These advantages are, however, offset by the costs of the membrane modules, currently in excess of US 3000/m2 of membrane. [Pg.314]

Application Typical membrane material Selectivity (a) Average pressure-normalized flux [10-6 cm3(STP)/ cm2 s cmHg] Module design commonly used... [Pg.318]

The pretreatments, described above, that deliver a particulate-free stream at 38 °C to the amine system provide a ready-made feed for processing via membrane modules. This feed can be used with simple and efficient membranes, new structured sorbents, membrane + structured sorbent hybrid systems or more advanced super H2 selective membranes. These membrane systems can simplify and condense the flow sheet in Figure 7.10, thereby enabling a more compact plant with less piping and associated maintenance concerns. [Pg.155]

Hollow fine fiber membranes are extremely fine polymeric tubes 50-200 micrometers in diameter. The selective layer is on the outside surface of the fibers, facing the high-pressure gas. A hollow-fiber membrane module will normally contain tens of thousands of parallel fibers potted at both ends in epoxy tube sheets. Depending on the module design, both tube sheets can be open, or as shown in Figure 8.1, one fiber end can be blocked and one open. The high-pressure feed gas flows past the membrane surface. A portion of the feed gas permeates the membrane and enters the bore of the fiber and is removed from the open end of the tube sheet. Fiber diameters are small because the fibers must support very large pressure differences feed-to-permeate (shell-to-bore). [Pg.169]

Each membrane/module type has advantages and disadvantages [2,7]. Hollow fine fibers are generally the cheapest on a per-square-meter basis, but it is harder to make very thin selective membrane layers in hollow-fiber form than in flat-sheet form. This means the permeances of hollow fibers are usually lower than flat-sheet membranes made from the same material. Also, hollow fine fiber modules require more pretreatment of the feed to remove particulates, oil mist and other fouling components than is usually required by capillary or spiral-wound modules. These factors offset some of the cost advantage of the hollow fine fiber design. [Pg.170]

Capillary membrane modules very similar to those used for nitrogen production are also used to produce dry air. The water molecule is smaller and more condensable than oxygen and nitrogen, so many membrane materials are available with water/air selectivities of several hundred. [Pg.173]

Counterflow modules are always more efficient than crossflow modules, but the advantage is most noticeable when the membrane selectivity is much higher than the pressure ratio across the membrane and a significant fraction of the most permeable component is being removed from the feed gas. This is the case for air-dehydration membrane modules, so counterflow capillary modules are almost always used. With most other gas-separation applications, the advantage offered by counterflow designs does not offset the extra cost of making the counterflow type of module, so they are not widely used. [Pg.175]

Developing new, more effective membrane modules, and membrane material with the desired membrane structure that have narrow pore-size distribution and thus, better selectivity ... [Pg.328]

For a defect-free ideal membrane, the selectivity is independent of thickness, and either permeability ratios or permeance ratios can be used for comparison of selectivi-ties of different materials. Nonideal module flow patterns, defective separating layers, impurities in feeds, and other factors can lower the actual selectivity of a membrane compared to tabulated values based on ideal conditions (Koros and Pinnau, 1994). [Pg.359]


See other pages where Membrane module selection is mentioned: [Pg.481]    [Pg.481]    [Pg.60]    [Pg.155]    [Pg.178]    [Pg.369]    [Pg.181]    [Pg.201]    [Pg.316]    [Pg.228]    [Pg.344]    [Pg.379]    [Pg.95]    [Pg.112]    [Pg.431]    [Pg.16]    [Pg.100]    [Pg.3]    [Pg.139]    [Pg.189]    [Pg.338]    [Pg.348]    [Pg.365]    [Pg.21]    [Pg.124]    [Pg.188]    [Pg.353]    [Pg.362]   
See also in sourсe #XX -- [ Pg.119 ]




SEARCH



Membrane modules

Membrane modules selectivity

Membrane selection

Membrane selectivity

© 2024 chempedia.info