Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Flat sheet asymmetric mixed-matrix

The geometries for asymmetric mixed-matrix membranes include flat sheets, hollow fibers and thin-fihn composites. The flat sheet asymmetric mixed-matrix membranes are formed into spirally wound modules and the hollow fiber asymmetric mixed-matrix membranes are formed into hollow fiber modules. The thin-film composite mixed-matrix membranes can be fabricated into either spirally wound or hollow fiber modules. The thin-film composite geometry of mixed-matrix membranes enables selection of different membrane materials for the support layer and low-cost production of asymmetric mixed-matrix membranes utilizing a relatively high-cost zeolite/polymer separating layer on the support layer. [Pg.343]

Flat Sheet Asymmetric Mixed-Matrix Membranes... [Pg.343]

Kulprathipanja and coworkers reported the preparation of integrally skinned siUcaUte-1/cellulose acetate flat sheet asymmetric mixed-matrix membranes via phase inversion technique in 1992 [73]. The O2/N2 separation performance of these membranes was investigated. It was demonstrated that the separation factor of... [Pg.344]

Zeolite/polymer mixed-matrix membranes can be fabricated into dense film, asymmetric flat sheet, or asymmetric hollow fiber. Similar to commercial polymer membranes, mixed-matrix membranes need to have an asymmetric membrane geometry with a thin selective skin layer on a porous support layer to be commercially viable. The skin layer should be made from a zeohte/polymer mixed-matrix material to provide the membrane high selectivity, but the non-selective porous support layer can be made from the zeohte/polymer mixed-matrix material, a pure polymer membrane material, or an inorganic membrane material. [Pg.341]

Once the formulation is established, asymmetric membranes can be cast as flat sheets or spun (extruded through a spinneret) into fiber form, followed either by an evaporation step or directly submerged into the quench bath. In this quenching process, the nonsolvent penetrates the membrane and the solvent diffuses out into the quench bath. The entering nonsolvent causes the phase separation of the membrane with the porosity being formed by the domains of polymer lean phase, which are washed out of the final membrane structure. For mixed-matrix membranes, it is believed that defects (sieve-in-cage) can form due to the nucleation of nonsolvent-polymer lean phase around the DP during the phase separation. One successful... [Pg.802]

In this regard, there is an excellent review article on MMMs for gas separation, with a detailed discussion on the morphology of the interface between the inorganic particles and the polymer matrix (Chung et al. 2007). Unlike many other articles, this deals with asymmetric membranes for both flat sheets and hollow fibers aimed at the formation of an ultrathin defect-free mixed-matrix skin layer. [Pg.605]


See other pages where Flat sheet asymmetric mixed-matrix is mentioned: [Pg.345]    [Pg.345]    [Pg.345]    [Pg.345]    [Pg.345]    [Pg.343]   


SEARCH



Asymmetric flat sheet

Flat sheet

Flat sheet asymmetric mixed-matrix membranes

Mixed asymmetric

Mixed matrix

© 2024 chempedia.info