Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Measurement oscilloscope

Equivalent circuit of ferroelectret film sensor Force rate measurements Oscilloscope... [Pg.662]

There are two categories of equipment which determine the selection of equipment general-purpose and special-to-type equipment. It should not be necessary to specify all the general-purpose equipment needed to perform basic measurements, which would be expected to be known by appropriately trained personnel. You should not need to tell an inspector or tester which micrometer, vernier caliper, voltmeter, or oscilloscope to use. These are the tools of the trade and they should select the tool which is capable of measuring the particular parameters with the accuracy and precision required. However, you will need to tell them which device to use if the measurement requires unusual equipment or the environmental conditions prevailing require that only equipment be selected that will operate in such an environment. In such cases the particular devices to be used should be specified in the test or inspection procedures. In order to demonstrate that you selected the appropriate device at some later date, you should consider recording the actual device used in the record of results. With mechanical devices this is not normally necessary because wear should be detected well in advance of there being a problem by periodic calibration. [Pg.410]

Perfluoroalkane-225 (PGR, Gainesville, FL) was admitted through a glass inlet system to provide reference peaks. Analytical and reference peaks for the nitrosamines studied are shown in Table I. Sample and reference peaks were scanned alternately at a repetition rate of approximately 1 sec and were monitored on an oscilloscope. When the nitrosamine peak appeared, the oscillographic recorder chart drive was engaged and remained on until the peak disappeared. Nitrosamine quantities were estimated by comparing the sum of sample peak heights measured from the chart (usually 10 to 20 values) with values derived from injection of standard solutions. [Pg.337]

In transient measurements one must record rapidfy changing currents or potentials. In the past, cathode-ray oscilloscopes have been used for this purpose (at present, improved recording devices or computers are used as well), hence the term oscillographic polarography (or oscillographic voltammetry). This term is unfortunate since it reflects only the device used to record the results, rather than the essential features of the method used for the measurements. [Pg.395]

Further, the operator must be able to choose the drop lifetime and the scan parameters, viz., the starting potential, direction (cathodic or anodic), rate and end potential, together with the sensitivity of the current measurement and the amplification in the ohmic cell resistance compensation circuit. Convenient additional facilities are (a) display of the polarogram on an oscilloscope, (b) delivery of hard copy of the polarograms on a chart recorder and (c) repeated recording of the polarographic curve for the same sample. [Pg.332]

The simplest of the methods employing controlled current density is electrolysis at constant current density, in which the E-t dependence is measured (the galvanostatic or chronopotentiometric method). The instrumentation for this method is much less involved than for controlled-potential methods. The basic experimental arrangement for galvanostatic measurements is shown in Fig. 5.15, where a recording voltmeter or oscilloscope replaces the potentiometer. The theory of the simplest applications of this method to electrode processes was described in Section 5.4.1 (see Eqs 5.4.16 and 5.4.17). [Pg.311]

Ultraviolet absorption spectra were obtained from a Cary 118C Spectrophotometer. Luminescence measurements were obtained from a Perkin-Elmer Model MPF-3 Fluorescence Spectrophotometer equipped with Corrected Spectra, Phosphorescence and Front Surface Accessories. A Tektronix Model 510N Storage Oscilloscope was used for luminescence lifetime measurements. Fiber irradiation photolyses were carried out in a Rayonet Type RS Model RPR-208 Preparative Photochemical Reactor equipped with a MGR-100 Merry-go-Round assembly. [Pg.240]

Fig. 6. Schematic diagram of the Nottingham apparatus for IR kinetic measurements on solutions. Solid lines represent the light path, broken lines the electrical connections. L = Line tunable CO laser, S = sample cell, F = flash lamp, P = photodiode, D = fast MCT IR detector, T = transient digitizer, O = oscilloscope, and M = microcomputer. Nonfocussing optics were used throughout, and the IR laser beam was heavily attenuated by a variable path cell V, filled with liquid methanol, placed immediately in front of the detector. [Reproduced with permission from Moore et al. (61).]... Fig. 6. Schematic diagram of the Nottingham apparatus for IR kinetic measurements on solutions. Solid lines represent the light path, broken lines the electrical connections. L = Line tunable CO laser, S = sample cell, F = flash lamp, P = photodiode, D = fast MCT IR detector, T = transient digitizer, O = oscilloscope, and M = microcomputer. Nonfocussing optics were used throughout, and the IR laser beam was heavily attenuated by a variable path cell V, filled with liquid methanol, placed immediately in front of the detector. [Reproduced with permission from Moore et al. (61).]...
Electrochemical Equipment. Electrochemical experiments were performed using either a PAR Model 175 universal programmer and a PAR Model 363 potentiostat/galvanostat, or a Pine Instruments RDE-4 bipotentiostat, coupled with a Kipp and Zonen BD 91 X-y-y recorder. The current-time response for the chronoamperometry experiments was recorded with a Nicolet 4094 digital oscilloscope. All potentials were measured vs. a Ag/10"2 M Ag+ reference electrode. [Pg.411]


See other pages where Measurement oscilloscope is mentioned: [Pg.723]    [Pg.723]    [Pg.2949]    [Pg.3029]    [Pg.179]    [Pg.510]    [Pg.512]    [Pg.512]    [Pg.746]    [Pg.841]    [Pg.55]    [Pg.52]    [Pg.136]    [Pg.241]    [Pg.241]    [Pg.242]    [Pg.242]    [Pg.51]    [Pg.125]    [Pg.226]    [Pg.9]    [Pg.170]    [Pg.395]    [Pg.69]    [Pg.28]    [Pg.609]    [Pg.36]    [Pg.8]    [Pg.192]    [Pg.348]    [Pg.427]    [Pg.351]    [Pg.179]    [Pg.19]    [Pg.29]    [Pg.109]    [Pg.75]    [Pg.140]    [Pg.603]   
See also in sourсe #XX -- [ Pg.570 ]




SEARCH



Oscilloscope/velocity probe measuring

Oscilloscopes

Oscilloscopes Storage Tubes-Measurement

Oscilloscopic measurements

Oscilloscopic measurements

© 2024 chempedia.info