Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyesters matrix materials

Phenohc resins (qv), once a popular matrix material for composite materials, have in recent years been superseded by polyesters and epoxies. Nevertheless, phenohc resins stiU find considerable use in appHcations where high temperature stabiHty and fire resistance are of paramount importance. Typical examples of the use of phenoHc resins in the marine industry include internal bulkheads, decks, and certain finishings. The curing process involves significant production of water, often resulting in the formation of voids within the volume of the material. Further, the fact that phenoHcs are prone to absorb water in humid or aqueous conditions somewhat limits their widespread appHcation. PhenoHc resins are also used as the adhesive in plywood, and phenohc molding compounds have wide use in household appliances and in the automotive, aerospace, and electrical industries (12). [Pg.7]

The generic thermosets are the epoxies and the polyesters (both widely used as matrix materials for fibre-reinforced polymers) and the formaldehyde-based plastics (widely used for moulding and hard surfacing). Other formaldehyde plastics, which now replace bakelite, are ureaformaldehyde (used for electrical fittings) and melamine-formaldehyde (used for tableware). [Pg.221]

A composite material for a car-repair kit consists of a random mixture of short glass fibres in a polyester matrix. Estimate the maximum toughness of the composite. You may assume that the volume fraction of glass is 30% the fibre diameter is 15 pm the fracture strength of the fibres is 1400 MPa and the shear strength of the matrix is 30 MPa. [Pg.276]

A polyester matrix is reinforced with continuous glass fibres. A 15 mm wide beam made from this material is to be simply supported over a 300 mm length and have a point load at midspan. For a fixed beam weight of 90 g/m investigate how the stiffness of the beam changes with the volume fraction of glass and state the optimum volume fraction, (p/ = 2560 kg/m. p , = 1210 kg/m Ef = 76 GN/m = 3 GN/m ). [Pg.243]

Polymer-matrix materials include a wide range of specific materials. Perhaps the most commonly used polymer is epoxy. Other polymers include vinyl ester and polyester. Polymers can be either of the thermoset type, where cross-linking of polymer chains is irreversible, or of the thermoplastic type, where cross-linking does not take place but the matrix only hardens and can be softened and hardened repeatedly. For example, thermoplastics can be heated and reheated, as is essential to any injection-molding process. In contrast, thermosets do not melt upon reheating, so they cannot be injection molded. Polyimides have a higher temperature limit than epoxies (650°F versus 250°F or 350°F) (343°C versus 121°C or 177°C), but are much more brittle and considerably harder to process. [Pg.393]

The lower thermal stability of natural fibers, up to 230°C, the thermal stability is only small, which limits the number of thermoplastics to be considered as matrix materials for natural fiber composites. Only those thermoplastics whose processing temperature does not exceed 230°C are usable for natural fiber reinforced composites. These are, most of all, polyolefines, such as polyethylene and polypropylene. Technical thermoplastics, such as poyamides, polyesters, and polycarbonates, require... [Pg.803]

Saturated complex polyesters, particularly, poly (butylene terephthalate) (PBT) are used as engineering thermoplastics possesing good thermo - and wearstability, excellent moulding. These properties also allow to use them as matrix material for polymer composites [1], One of the perspective ways of search of effective catalysts for such systems is kinetic study of the reesterification model reaction, performed in the presence of various catalysts and comparison it with the results of the similar reaction without catalyst. Clarification on the example of model system of the most effective catalysts list allows to use them for obtaining both filled and nonfilled PBT and compare catalytic activity of various catalysts. The purpose of the... [Pg.233]

We will see in Section 5.4.2 that the elastic modulus of a unidirectional, continuous-fiber-reinforced composite depends on whether the composite is tested along the direction of fiber orientation (parallel) or normal to the fiber direction (transverse). In fact, the elastic modulus parallel to the fibers, Ei, is given by Eq. (1.62), whereas the transverse modulus, 2, is given by Eq. (1.63). Consider a composite material that consists of 40% (by volume) continuous, uniaxially aligned, glass fibers (Ef =16 GPa) in a polyester matrix (Em = 3 GPa). [Pg.102]

Most structural PMCs consist of a relatively soft matrix, such as a thermosetting plastic of polyester, phenolic, or epoxy, sometimes referred to as resin-matrix composites. Some typical polymers used as matrices in PMCs are listed in Table 1.28. The list of metals used in MMCs is much shorter. Aluminum, magnesium, titanium, and iron- and nickel-based alloys are the most common (see Table 1.29). These metals are typically utilized due to their combination of low density and good mechanical properties. Matrix materials for CMCs generally fall into fonr categories glass ceramics like lithium aluminosilicate oxide ceramics like aluminnm oxide (alnmina) and mullite nitride ceramics such as silicon nitride and carbide ceramics such as silicon carbide. [Pg.103]

In most applications, polyester and vinyl ester resins are used as the matrix materials. Epoxies are also used, although they require longer cure times and do not release easily from the pultrusion dies. Hence, thermosetting resins are most commonly used with pultrusion, although some high-performance thermoplastics such as PEEK and polysulfone can also be accommodated. In addition to the resin, the resin bath may contain a curing agent (initiator, cf. Section 3.3.1.2), colorants, ultraviolet stabilizer, and fire retardant. [Pg.796]

Virtually any reinforcement-matrix combination feasible in any other composites application also may be used in pultrusion however, glass heavily dominates as reinforcement with 95 percent in the United States and 98 percent in Europe (see Table 11.1), whereas polyester resin dominates as matrix material with 79 percent in the United States and 66 percent in Europe [2]. [Pg.323]

Matrix materials for commercial composites are mainly liquid thermosetting resins such as polyesters, vinyl esters, epoxy resins, and bismaleimide resins. Thermoplastic composites are made from polyamides, polyether ether ketone (PEEK), polyphenylene sulfide (PPS), polysulfone, polyetherim-ide (PEI), and polyamide-imide (PAI). [Pg.207]

Spent resins are generally compatible with the polymer matrix material. Generally, the polymer and the resin do not interact chemically. The immobilization of spent ion-exchange resins in polymers is a common application all over the world. Epoxy resins, polyesters, polyethylene, polystyrene and copolymers, polyurethane, phenol-formaldehyde, and polystyrene are among the polymers used (IAEA, 1988). Inorganic materials are generally not immobilized using polymers because they are more acceptable to other immobilization matrices such as cement. [Pg.352]

All the chromophores are thermally stable with decomposition temperatures varying from 230 to 263°C. Thienyl azodyes linked to a polyester matrix were obtained for optical storage material, where the trans-cis photoisomerization was used at this purpose (07MI4477). [Pg.238]

A polyester resin P-43 (Rohm and Haas) was selected as a matrix material. The glass fiber reinforcement was in the form of a chopped strand mat (M 700) weighing 1 Vz oz/sq ft bonded together with a high solubility polyester resin. The chopped fibers were about 2 in. long and the fiber diameter was about 0.0004 in. [Pg.356]

The matrix is considered to be the binder for the microspheres. Typical matrix materials include (a) thermosetting resins such as epoxy resins, unsaturated polyesters, vinyl esters, phenolics, polyurethanes, and silicones (b) thermoplastic resins such as polyethylene, polystyrene, polyvinyl chloride (c) asphalt and (d) gypsiun and cement. [Pg.148]

LNP developed a similar family Lubricomp ) in which PTFE has custom-tailored MW to serve the purpose of formation of lubricity film over the mating surface under shear. Matrix materials include PE, Poly(ethylene-co-chloroethylene), PP, PS, ABS, SAN, PA-6, PA-66, PA-6,10, PA-6,12, PA-12, amorphous PA, PBT, polyester elastomer, PC, POM, PPE, PEI, PEEK, PSF, PES, PPS, TPU, PVDF, polyfluoroaUcoxy and ethylene tetra-fluoroethyene copolymer. [Pg.680]

Acids also have technological importance. For example, ethyl benzoates and benzoic acids, can be incorporated to a polyester matrix, in order to alter the gas permeability of the material [13]. In some applications, it is... [Pg.425]

A considerable amount of research has been carried out in recent years into the design of matrix materials for the next generation of supersonic civil transports and much of it has focused on amide, imide and related structures. Among resins studied are the polystyrylpyridine (PSP) family, the polyamide-imides, polyetherimides, polyetherketones, and for very high temperatures, the polyphenylquinoxalines, the polybenzimidazoles and the aromatic polyesters [50,51]. Some generalizations emerge [52] ... [Pg.134]


See other pages where Polyesters matrix materials is mentioned: [Pg.266]    [Pg.266]    [Pg.309]    [Pg.787]    [Pg.814]    [Pg.3]    [Pg.27]    [Pg.427]    [Pg.8]    [Pg.179]    [Pg.250]    [Pg.320]    [Pg.108]    [Pg.48]    [Pg.164]    [Pg.210]    [Pg.400]    [Pg.2125]    [Pg.369]    [Pg.128]    [Pg.156]    [Pg.7]    [Pg.533]    [Pg.81]    [Pg.323]    [Pg.241]    [Pg.220]   
See also in sourсe #XX -- [ Pg.47 , Pg.48 , Pg.49 , Pg.50 ]




SEARCH



Matrix material

Matrix polyester

© 2024 chempedia.info