Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

External mass transport

Based on such analyses, which of course do imply a film model in which the resistance to mass transfer is supposed to be confined to a film of finite thickness (see Volume 1, Chapter 10), it is possible to estimate the effect which mass transport external to the solid surface has on the overall reaction rate. For equimolar counterdiffusion of a component A in the gas phase, the rate of transfer of A from the bulk gas to the interface can be expressed as ... [Pg.143]

Intraparticle mass transport resistance can lead to disguises in selectivity. If a series reaction A — B — C takes place in a porous catalyst particle with a small effectiveness factor, the observed conversion to the intermediate B is less than what would be observed in the absence of a significant mass transport influence. This happens because as the resistance to transport of B in the pores increases, B is more likely to be converted to C rather than to be transported from the catalyst interior to the external surface. This result has important consequences in processes such as selective oxidations, in which the desired product is an intermediate and not the total oxidation product CO2. [Pg.172]

Rates and selectivities of soHd catalyzed reactions can also be influenced by mass transport resistance in the external fluid phase. Most reactions are not influenced by external-phase transport, but the rates of some very fast reactions, eg, ammonia oxidation, are deterrnined solely by the resistance to this transport. As the resistance to mass transport within the catalyst pores is larger than that in the external fluid phase, the effectiveness factor of a porous catalyst is expected to be less than unity whenever the external-phase mass transport resistance is significant, A practical catalyst that is used under such circumstances is the ammonia oxidation catalyst. It is a nonporous metal and consists of layers of wire woven into a mesh. [Pg.172]

Mass Transport. An expression for the diffusive transport of the light component of a binary gas mixture in the radial direction in the gas centrifuge can be obtained directly from the general diffusion equation and an expression for the radial pressure gradient in the centrifuge. For diffusion in a binary system in the absence of temperature gradients and external forces, the general diffusion equation retains only the pressure diffusion and ordinary diffusion effects and takes the form... [Pg.92]

At any instant, pressure is uniform throughout a bubble, while in the surrounding emulsion pressure increases with depth below the surfaee. Thus, there is a pressure gradient external to the bubble which causes gas to flow from the emulsion into the bottom of the bubble, and from the top of the bubble back into the emulsion. This flow is about three times the minimum fluidization velocity across the maximum horizontal cross section of the bubble. It provides a major mass transport mechanism between bubble and emulsion and henee contributes greatly to any reactions which take place in a fluid bed. The flow out through the top of the bubble is also sufficient to maintain a stable arch and prevent solids from dumping into the bubble from above. It is thus responsible for the fact that bubbles can exist in fluid beds, even though there is no surface tension as there is in gas-liquid systems. [Pg.35]

Summing up this section, we would like to note that understanding size effects in electrocatalysis requires the application of appropriate model systems that on the one hand represent the intrinsic properties of supported metal nanoparticles, such as small size and interaction with their support, and on the other allow straightforward separation between kinetic, ohmic, and mass transport (internal and external) losses and control of readsorption effects. This requirement is met, for example, by metal particles and nanoparticle arrays on flat nonporous supports. Their investigation allows unambiguous access to reaction kinetics and control of catalyst structure. However, in order to understand how catalysts will behave in the fuel cell environment, these studies must be complemented with GDE and MEA tests to account for the presence of aqueous electrolyte in model experiments. [Pg.526]

Many of the electrochemical techniques described in this book fulfill all of these criteria. By using an external potential to drive a charge transfer process (electron or ion transfer), mass transport (typically by diffusion) is well-defined and calculable, and the current provides a direct measurement of the interfacial reaction rate [8]. However, there is a whole class of spontaneous reactions, which do not involve net interfacial charge transfer, where these criteria are more difficult to implement. For this type of process, hydro-dynamic techniques become important, where mass transport is controlled by convection as well as diffusion. [Pg.333]

Experimental measurements must be interpreted in connection with all external influences, including fluid flow, bulk viscosity, and pH of the system. Consideration must be given to whether the mass transport is occurring in one or more dimensions and whether mass transport is affected by pressure gradients and/or osmotic pressure gradients. [Pg.103]

In the biomedical literature (e.g. solute = enzyme, drug, etc.), values of kf and kr are often estimated from kinetic experiments that do not distinguish between diffusive transport in the external medium and chemical reaction effects. In that case, reaction kinetics are generally assumed to be rate-limiting with respect to mass transport. This assumption is typically confirmed by comparing the adsorption transient to maximum rates of diffusive flux to the cell surface. Values of kf and kr are then determined from the start of short-term experiments with either no (determination of kf) or a finite concentration (determination of kT) of initial surface bound solute [189]. If the rate constant for the reaction at the cell surface is near or equal to (cf. equation (16)), then... [Pg.475]

Mass transfer rate processes, 25 279 Mass-transfer resistance, 11 808 external, 25 290—293 Mass-transfer theory, 10 761 Mass transport, electrochemical cell, 9 658-659... [Pg.554]

Ary given catalytic material can be abstracted based on the same underlying similar architecture — for ease of comparison, we describe the catalytic material as a porous network with the active centers responsible for the conversion of educts to products distributed on the internal surface of the pores and the external surface area. Generally, the conversion of any given educt by the aid of the catalytic material is divided into a number of consecutive steps. Figure 11.13 illustrates these different steps. The governing transport phenomenon outside the catalyst responsible for mass transport is the convective fluid flow. This changes dramatically close to the catalyst surface from a certain boundary onwards, named the hydrodynamic boundary layer, mass transport toward and from the catalyst surface only takes place... [Pg.391]

It is possible to make nonstoichiometric solids that have ionic conductivities as high as 0.1-1000 S m-1 (essentially the same as for liquid electrolytes) yet negligible electronic conductances. Such solid electrolytes are needed for high energy density electrical cells, fuel cells, and advanced batteries (Chapter 15), in which mass transport of ions between electrodes is necessary but internal leakage of electrons intended for the external circuit... [Pg.102]

The observed current through the external circuit is determined by the kinetics of the slowest of the various individual steps that take place in each electrode processes mass transport, charge transfer, chemical transformations, etc. [Pg.7]

In electrode kinetics, however, the charge transfer rate coefficient can be externally varied over many orders of magnitude through the electrode potential and kd can be controlled by means of hydrodynamic electrodes so separation of /eapp and kd can be achieved. Experiments under high mass transport rate at electrodes are the analogous to relaxation methods such as the stop flow method for the study of reactions in solution. [Pg.21]

Mass transport Diffusivity Diffusion length External surface area... [Pg.232]


See other pages where External mass transport is mentioned: [Pg.1933]    [Pg.92]    [Pg.814]    [Pg.538]    [Pg.19]    [Pg.314]    [Pg.577]    [Pg.578]    [Pg.275]    [Pg.127]    [Pg.409]    [Pg.93]    [Pg.211]    [Pg.545]    [Pg.63]    [Pg.184]    [Pg.448]    [Pg.449]    [Pg.233]    [Pg.197]    [Pg.471]    [Pg.93]    [Pg.114]    [Pg.498]    [Pg.208]    [Pg.5]    [Pg.45]    [Pg.36]    [Pg.578]    [Pg.63]    [Pg.92]    [Pg.68]    [Pg.210]    [Pg.80]    [Pg.29]    [Pg.33]   
See also in sourсe #XX -- [ Pg.304 ]




SEARCH



Coupled Heat and Mass Transfer in Packed Catalytic Tubular Reactors That Account for External Transport Limitations

External mass-transport systems

Internal and External Mass Transport in Isothermal Pellets

Mass transport

© 2024 chempedia.info