Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Maleic acid Nitriles

The radical polymerization in aqueous solution of a series of monomers—e.g., vinyl esters, acrylic and methacrylic acids, amides, nitriles, and esters, dicarboxylic acids, and butadiene—have been studied in a flow system using ESR spectrometry. Monomer and polymer radicals have been identified from their ESR spectra. fi-Coupling constants of vinyl ester radicals are low (12-13 gauss) and independent of temperature, tentatively indicating that the /3-CH2 group is locked with respect to the a-carbon group. In copolymerization studies, the low reactivity of vinyl acetate has been confirmed, and increasing reactivity for maleic acid, acrylic acid, acrylonitrile, and fumaric acid in this order has been established by quantitative evaluation of the ESR spectra. This method offers a new approach to studies of free radical polymerization. [Pg.142]

Nitrile, azo, and nitroso groups, and even the oxygen molecule, take part in such reactions, and acetylenic triple bonds in particular confer reactivity as philodiene. As for dienes, so for philodienes the reactivity depends on the constitution. Activating groups particularly favor addition. The most reactive components include <%,/ -unsaturated carbonyl compounds such as acrolein, acrylic acid, maleic acid and its anhydride, acetylenedicarboxylic acid, p-benzo-quinone and cinnamaldehyde, as well as saturated nitriles and <%,/ -unsaturated nitro compounds. Tetracyanoethylene also reacts with dienes.41,42 Conjugation of the double bond to an active group is not absolutely essential for a philodiene, for dienes add under certain conditions also to philodienes with isolated double bonds examples of the latter type are vinyl esters and vinyl-acetic acid. Ketenes do not undergo the Diels-Alder reaction with dienes, but instead yield cyclobutanone derivatives 43,44... [Pg.855]

As an example, this apply to enols or tautomeric enols such as maleic acid derivatives. While with a chemical reagent (cerium ammonium nitrate) the only process occurring is oxidative dimerization, when aromatic nitriles are used as the photochemical oxidant, selective trapping of the radicals by an electrophilic alkenes or by the nitrile itself occurs. Under these conditions, both the alkylation of alkenes and the oxidative alkylation/dimerization of dienes have been smoothly obtained (see Scheme 8) and side processes such as double alkylation or polymerization often occurring with other methods have been avoided. A three-component (Nucleophile-Olefin Combination, Aromatic Substitution) process is also possible. ... [Pg.21]

Polymer alloys are commercial polymer blends with improvanent in property balance with the use of compatibilizers. Texas A M University [1] has patented a com-patibilizer that can result in a product with high impact resistance as well as scratch resistance. The blend is composed of HIPS or polypropylene (PP) and a compati-bilizer made of a triblock copolymer of styrene-ethylene-propylene. Udipi [2] discovered that polymer blends composed of PC, a copolyester of PETG, and nitrile rubber exhibit a superior balance of properties. Reactive compatibilization of PC/ SAN blends at various AN compositions were conducted by Wildes et al. [3] using a SAN-amine compatibilizer. PC and SAN were found to be miscible over a range of AN composition by Mendelson [5]. Nylon/ABS blends can be compatibilized by use of SAN-maleic acid (Lavengood et al. [6]). Styrene-GMA copolymers can be used as compatibilizers for PS/PA, PS/PBT, PS/PET, and PPO/PBT blends. [Pg.176]

Presently, many organic additives fall into the category of polymerizable monomers. A non-exhaustive list includes esters (including carboxylic esters/carbonates and other inorganic esters such as phosphates, sulfates, and silicates) that are derived from vinyl and allyl alcohols [2,54,71], vinyl pyridine [63], acrylic acid nitrile [110], maleic acid derivatives [125, 131], vinyl sulfones [128], vinyl silanes [113], and isocyanates [65, 171] (Fig. 2). The synergistic effect of different unsaturated compounds used in various combinations has also been reported [1]. [Pg.266]

Some specific recent applications of the GC-MS technique to various types of polymers include the following PE [49,50], poly(l-octene) [51], poly(l-decene) [51], poly(l-dodecene) [51], 1-octene-l-decene-l-dodecene terpolymer [51], chlorinated polyethylene [52], polyolefins [53, 54], acrylic acid methacrylic acid copolymers [55], polyacrylates [56], styrene-butadiene and other rubbers [57-59], nitrile rubber [60], natural rubbers [61, 62], chlorinated natural rubber [63, 64], polychloroprene [65], PVC [66-68], silicones [69, 70], polycarbonates [71], styrene-isoprene copolymers [72], substituted PS [73], polypropylene carbonate [74], ethylene-vinyl acetate copolymers [75], Nylon [76], polyisopropenyl cyclohexane a-methyl styrene copolymers [77], m-cresol-novolac epoxy resins [78], polymeric flame retardants [79], poly(4-N-alkyl styrenes) [80], polyvinyl pyrrolidone [81], vinyl pyrrolidone-methyl acryloxysilicone copolymers [82], polybutylcyanoacrylate [83], polysulfide copolymers [84], poly(diethyl-2-methacryloxy)ethyl phosphate [85], ethane-carbon monoxide copolymers [86], polyetherimide [87], bisphenol A [88], ethyl styrene [89], styrene-isoprene block copolymer [89], polyvinyl alcohol-co-vinyl acetate [90], epoxide thiol [91], maleic acid-propylene copolymer [92], P-hydroxy butyrate-P-hydroxy valerate copolymer [93], polycaprolactams [39,94], PS [95,96], polypyrrole [95,96], polyhydroxy alkanoates [97], poly(p-chloromethyl) styrene [81], polybenzooxazines and siloxy substituted polyoxadisila-pentanylenes [98,99] poly benzyl methacrylates [100], polyolefin blends after ageing in soil [101] and polystyrene peroxide [43]. [Pg.150]

Examples of polyfunctional carboxylic acids esterified by this method are shown in Table I. Yields are uniformly high, with the exception of those cases (maleic and fumaric acids) where some of the product appears to be lost during work-up as a result of water solubility. Even with carboxylic acids containing a second functional group (e.g., amide, nitrile) which can readily react with the oxonium salt, the more nucleophilic carboxylate anion is preferentially alkylated. The examples described in detail above illustrate the esterification of an acid containing a labile acetoxy group, which would not survive other procedures such as the traditional Fischer esterification. [Pg.62]

The Addition of the NH-Gtroup ofPyrazoles to Activated Double Bonds Pyrazoles undergo Michael addition to a,j3-unsaturated acids and esters,618,736,737,737 acrylonitrile,104,483,738 maleic anhydride, acetylene dicarboxylic ester,282,737 a,j8-unsaturated ketones,736 and quinones.104 Alkaline catalysts667 are not essential in this reaction,104 at least for addition to unsaturated nitriles, maleic anhydride, and quinones. The reaction is reversible, and V-pyrazolyl propionic... [Pg.422]

Af-Unsubstituted pyrazoles and indazoles add to compounds containing activated double and triple bonds (67HC 22)1,B-76MI40402>. Amongst C—C double and triple bonds, maleic anhydride, acrylic acid esters and nitriles, acetylene-carboxylic and -dicarboxylic esters (78AHC(23)263), quinones, and some a,/3-unsaturated ketones have been used with success. Phenylacetylene reacts with pyrazole in the presence of Na/HMPT as catalyst to yield the Z isomer of 1-styrylpyrazole in a highly stereoselective reaction (78JHC1543). [Pg.233]

Properties Tensile strength (psi) 32,000-39,000, d 1.14-1.17, break elongation 20-28%, moisture regain 1.5% (21.2C, 65% RH), softens at 235C, soluble in butyrolactone (hot), dimethyl formamide (hot), ethylene carbonate (hot), resistant to mineral acids, fair to good resistance to weak alkalies. Insoluble in alcohol, acetone, benzene, carbon tetrachloride, and petroleum ether soluble in dimethyl sulfoxide, maleic anhydride, ethylene carbonate, nitriles, and nitrophenols. [Pg.930]


See other pages where Maleic acid Nitriles is mentioned: [Pg.159]    [Pg.137]    [Pg.246]    [Pg.1295]    [Pg.513]    [Pg.4749]    [Pg.668]    [Pg.152]    [Pg.439]    [Pg.246]    [Pg.444]    [Pg.311]    [Pg.233]    [Pg.110]    [Pg.197]    [Pg.43]    [Pg.180]    [Pg.628]    [Pg.628]    [Pg.730]    [Pg.730]    [Pg.233]    [Pg.180]    [Pg.43]    [Pg.917]    [Pg.3156]    [Pg.324]    [Pg.215]    [Pg.354]    [Pg.539]    [Pg.719]    [Pg.779]    [Pg.107]    [Pg.324]   
See also in sourсe #XX -- [ Pg.46 ]




SEARCH



Maleic acid

Nitriles acidity

© 2024 chempedia.info