Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Localized corrosion leading

Localized corrosion activity is however a complex phenomenon that is still under active research. Localized corrosion leads to local pH gradients as recently studied in detail... [Pg.723]

Localized corrosion is far more treacherous in nature and far less readily predictable and controllable tlian unifonn corrosion and it is, moreover, capable of leading to unexpected damage witli disastrous consequences, especially since inspection of corrosion damage is in many cases difficult. [Pg.2728]

Evidence of localized corrosion can be obtained from polarization methods such as potentiodynamic polarization, EIS, and electrochemical noise measurements, which are particularly well suited to providing data on localized corrosion. When evidence of localized attack is obtained, the engineer needs to perform a careful analysis of the conditions that may lead to such attack. Correlation with process conditions can provide additional data about the susceptibility of the equipment to locaHzed attack and can potentially help prevent failures due to pitting or crevice corrosion. Since pitting may have a delayed initiation phase, careful consideration of the cause of the localized attack is critical. Laboratory testing and involvement of an... [Pg.2441]

Dents in tubing can induce erosion failures, especially in soft metals such as copper and brass. Welding and improper heat treatment of stainless steel can lead to localized corrosion or cracking through a change in the microstructure, such as sensitization. Another form of defect is the inadvertent substitution of an improper material. [Pg.316]

In soils the constituents restrict diffusion so that in general rises to over 5 mm. The removal rate is mostly below 30 /xm a [11-13]. The danger of corrosion in soil is generally local corrosion through cell formation or by anodic influence (see Fig. 2-5) and can lead to removal rates of from a few tenths of a millimeter to several millimeters/year. [Pg.142]

Pits occur as small areas of localized corrosion and vary in size, frequency of occurrence, and depth. Rapid penetration of the metal may occur, leading to metal perforation. Pits are often initiated because of inhomogeneity of the metal surface, deposits on the surface, or breaks in a passive film. The intensity of attack is related to the ratio of cathode area to anode ai ea (pit site), as well as the effect of the environment. Halide ions such as chlorides often stimulate pitting corrosion. Once a pit starts, a concentration-cell is developed since the base of the pit is less accessible to oxygen. [Pg.259]

This view of the corrosion process is, however, more often than not too simplified an explanation. First, even when general corrosion take place (as in an idle or wet lay-up boiler), the reaction mechanisms tend to occur at many localized points on the boiler metal surface, typically where cracks and other imperfections in the magnetite film exist. Second, such processes almost always lead to derived forms of localized corrosion, which often result in severe metal wastage through the formation of deep pits. [Pg.245]

Under-Deposit Corrosion In the same way that oxygen becomes depleted in a crevice, and a differential-oxygen concentration cell is established, leading to localized corrosion of the oxygen-starved anodic area, so the same phenomenon readily occurs in dirty boilers under deposits, sludge, and other foulants. [Pg.248]

Localized corrosion is a more common result of low pH water conditions than general corrosion. These conditions may be only temporary, but they may take place on a regular basis if the cause is not thoroughly investigated, it can lead to extensive pitting and gouging of boiler surfaces. [Pg.252]

Hydrogen can be produced as a result of the breakdown of hydrazine or amines, general etch corrosion, or localized corrosion that may, in turn, lead to the development of hydrogen embrittlement corrosion... [Pg.665]

That is, to determine the correct corrosion rates in pitting corrosion, as shown in Fig. 37, it is necessary to know the local corrosion currents on the electrode surface. The corrosion current observed is, however, obtained as the total current, which is collected by the lead wire of the electrode. From the usual electrochemical measurement, we can thus determine only an average corrosion current (i.e., the corrosion rate). Hence if we can find some way to relate such an average rate to each local corrosion rate, the local corrosion state can be determined even with the usual electrochemical method. [Pg.278]

Figure 16.5 Differential aeration around a poorly fitted rivet leads to intense local corrosion. Figure 16.5 Differential aeration around a poorly fitted rivet leads to intense local corrosion.
It should be mentioned that passive layers are not protective in all environments. In the presence of so-called aggressive anions, passive layers may break down locally, which leads to the formation of corrosion pits. They grow with a high local dissolution current density into the metal substrate with a serious damage of the metal within very short time. In this sense halides and some pseudo halides like SCN are effective. Chloride is of particular interest due to its presence in many environments. Pitting corrosion starts usually above a critical potential, the so-called pitting potential /i]>j. In the presence of inhibitors an upper limit, the inhibition potential Ej is observed for some metals. Both critical potentials define the potential range in which passivity may break down due to localized corrosion as indicated in Fig. 1. [Pg.275]

This book consists of nine chapters. The second chapter provides an overview of the important thermodynamic and kinetic parameters of relevance to corrosion electrochemistry. This foundation is used in the third chapter to focus on what might be viewed as an aberration from normal dissolution kinetics, passivity. This aberration, or peculiar condition as Faraday called it, is critical to the use of stainless steels, aluminum alloys, and all of the so-called corrosion resistant alloys (CRAs). The spatially discrete failure of passivity leads to localized corrosion, one of the most insidious and expensive forms of environmental attack. Chapter 4 explores the use of the electrical nature of corrosion reactions to model the interface as an electrical circuit, allowing measurement methods originating in electrical engineering to be applied to nondestructive corrosion evaluation and... [Pg.6]

Localized corrosion is the direct result of the breakdown of passivity at discrete sites on the material surface. As was stated above, once passivity is established on a surface, one might expect either that it would remain passive or that a complete activation of the surface would occur. However, what is often observed in practice is the appearance of discrete areas of attack that begin to corrode actively while the vast majority of the surface remains passive. These isolated regions of attack are more than mere annoyances the local penetration rates can be on the order of 10 mpy or higher, leading to rapid perforation of any reasonably sized container. Since the original intent in using passive materials (e.g., CRAs) in any application is to exploit their low dissolution rates, localized corrosion can be a major operational problem. [Pg.73]

Analysis methods for electrochemical noise data can be separated into three categories, (1) deterministic, (2) statistical, and (3) spectral. Deterministic methods involve the use of mixed potential theory to explain the oscillations that occur. For example, if the ZRA current increases suddenly while the potential difference between the two current electrodes and the potential electrode increases, localized corrosion has likely initiated on one of the current electrodes. A common pitfall in such a measurement is that if a nominally identical reference electrode is used, it could pit as well, leading to no change in potential versus the coupled electrodes. Due to the need for careful interpretation, deterministic methods are not widely used. [Pg.118]

When one is dealing with localized corrosion processes, the tendency is experimentally to determine or model whether a particular process can occur in a specific environment i.e., to determine the susceptibility. Such procedures are invaluable in materials selection, and the use of electrochemical methods is an integral part of these efforts. However, in some environments it is injudicious to assume that localized corrosion will not occur. One example would be SCC in nuclear reactor heat exchangers and other components. In other applications, the need to minimize materials costs leads to the selection of materials for which there is no guarantee of immunity to localized corrosion. For such applications there is a strong need for models that will predict how fast such processes will propagate once they are initiated and what kind and extent of damage will accumulate. [Pg.238]

Breakdown of anodic films is yet another phenomenon for which EIS is well suited. Equivalent circuit analysis has been used to analyze EIS spectra from corroding anodized surfaces. While changes in anodic films due to sealing are detected at higher frequencies, pitting is detected at lower frequencies. Film breakdown leads to substrate dissolution, and equivalent circuit models must be amended to account for the faradaic processes associated with localized corrosion. [Pg.312]

The corrosivity of soils also depends upon the oxidation-reduction potential as classified by Booth et al.15 The classification scheme of the corrosivity of soils is given in Table 4.4b. Macrogalvanic cells are formed in underground pipelines due to foreign structure the combination of new and old pipe dissimilar metals (stainless steel and carbon steel) differential aeration dissimilar soils and stray currents. All these lead to localized corrosion of underground pipelines. [Pg.211]

In such reactions as the tarnishing of silver in air, the oxidation of aluminum in air, or attack of lead in sulfate-containing environments, thin, tightly adherent protective films are formed, and the metal surface remains smooth. It should be mentioned that underground corrosion is frequently observed as localized corrosion. Oxidation, sulfidation, carburization, hydrogen effects, and hot corrosion can be considered as types of general corrosion.20... [Pg.340]


See other pages where Localized corrosion leading is mentioned: [Pg.2728]    [Pg.2753]    [Pg.262]    [Pg.280]    [Pg.40]    [Pg.393]    [Pg.891]    [Pg.122]    [Pg.501]    [Pg.735]    [Pg.541]    [Pg.27]    [Pg.350]    [Pg.350]    [Pg.51]    [Pg.47]    [Pg.98]    [Pg.181]    [Pg.78]    [Pg.219]    [Pg.45]    [Pg.56]    [Pg.57]    [Pg.67]    [Pg.74]    [Pg.85]    [Pg.95]    [Pg.112]    [Pg.115]    [Pg.337]    [Pg.340]   
See also in sourсe #XX -- [ Pg.272 ]




SEARCH



Lead, corrosion

Local corrosion

Localized corrosion surface conditions leading

Surface Conditions Leading to Localized Corrosion

© 2024 chempedia.info