Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lithium molten electrolytes

Table 8.1 Physical properties of some lithium and sodium molten electrolytes ... [Pg.248]

Using a cell that was designed along the lines of a molten carbonate fuel cell (Fig. 22), the removal rates of SOj varied from 78 7o at 600 ppm of SO at the cathode to 24% at 2100 ppm of at the cathode. The same authors [103] also reported an improvement over their earlier study by using a ternary eutectic of lithium, potassium, and sodium sulfates as the electrolyte together with Li20-9Cr03 electrodes, which were found to be stable in the molten electrolyte. [Pg.401]

Singh, R.N. Dusek, J.T. Sim, J.W. Fabrication and properties of a porous lithium aluminate electrolyte retainer for molten carbonate fuel cells. Am. Ceram. Soc. Bull. 1981, 60 (6), 629-635. [Pg.1763]

Carbon activities in alkali metals are also estimated by electrochemical meters. These are based on the activity differences between two carbon bearing electrodes separated by a carbon ions conducting electrolyte. The electrolyte is a molten salt mixture, consisting of the eutectic of lithium and sodium carbonate, melting at approximately 500 °C. The molten salt mixture has to be kept free from any impurities or humidity. The mixture, acting as liquid electrolyte is kept in an iron cup. The iron wall is in contact with both the liquid electrolyte and the liquid metal. Thus, it exchanges carbon with both up to the equilibrium. Iron, with the same carbon potential as the liquid metal, acts as one electrode. The reference electrode of graphite or any other material with a well defined and stable carbon activity is immersed in the molten electrolyte. The Nernst equation defines the potential of the electrochemical chain ... [Pg.143]

Garcia B. LavaUee S. Perron G. Michot C. Armand M., Room temperature molten salts as lithium battery electrolyte, Electrochim. Acta, 2004, 49 4583-4588. [Pg.221]

Kubota, K. Matsumoto, H., Investigation of an Intermediate Temperature Molten Lithium Salt Based on Fluorosulfonyl(trifluoromethylsulfonyl)amide as a Solvent-Free Lithium Battery Electrolyte, /. Phys. Chem. C, 2013,117, 18829-18836. [Pg.223]

Garcia, B., Lavallee, S., Perron, G., Michot, C. Armand, M. (2004). Room tempierature molten salts as lithium battery electrolyte., Electrochim. Acta 49 4583-4588. [Pg.124]

Similar designs have been used in lithium chloride batteries, which operate at a temperature of 650 °C. The cell has the form Li(liq)/LiCl(liq)/Cl2(g), carbon. The two electrodes, liquid Li anode and the porous carbon cathode in which the chlorine gas is fed under pressure, are separated by a molten lithium chloride electrolyte. The overall cell reaction is ... [Pg.35]

Molten lithium fluoride is used in salt mixtures for an electrolyte in high temperature batteries (qv) (FLINAK) (20), and as a carrier in breeder reactors (FLIBE) (21) (see Nuclear reactors). [Pg.206]

An emerging electrochemical appHcation of lithium compounds is in molten carbonate fuel ceUs (qv) for high efficiency, low poUuting electrical power generation. The electrolyte for these fuel ceUs is a potassium carbonate—hthium carbonate eutectic contained within a lithium aluminate matrix. The cathode is a Hthiated metal oxide such as lithium nickel oxide. [Pg.225]

The molten carbonate fuel ceU uses eutectic blends of Hthium and potassium carbonates as the electrolyte. A special grade of Hthium carbonate is used in treatment of affective mental (mood) disorders, including clinical depression and bipolar disorders. Lithium has also been evaluated in treatment of schizophrenia, schizoaffective disorders, alcoholism, and periodic aggressive behavior (56). [Pg.225]

Lithium Chloride. Lithium chloride [7447- 1-8], LiCl, is produced from the reaction of Hthium carbonate or hydroxide with hydrochloric acid. The salt melts at 608°C and bods at 1382°C. The 41-mol % LiCl—59-mol % KCl eutectic (melting point, 352°C) is employed as the electrolyte in the molten salt electrolysis production of Hthium metal. It is also used, often with other alkaH haHdes, in brazing flux eutectics and other molten salt appHcations such as electrolytes for high temperature Hthium batteries. [Pg.225]

Lithium Iodide. Lithium iodide [10377-51 -2/, Lil, is the most difficult lithium halide to prepare and has few appHcations. Aqueous solutions of the salt can be prepared by carehil neutralization of hydroiodic acid with lithium carbonate or lithium hydroxide. Concentration of the aqueous solution leads successively to the trihydrate [7790-22-9] dihydrate [17023-25-5] and monohydrate [17023-24 ] which melt congmendy at 75, 79, and 130°C, respectively. The anhydrous salt can be obtained by carehil removal of water under vacuum, but because of the strong tendency to oxidize and eliminate iodine which occurs on heating the salt ia air, it is often prepared from reactions of lithium metal or lithium hydride with iodine ia organic solvents. The salt is extremely soluble ia water (62.6 wt % at 25°C) (59) and the solutions have extremely low vapor pressures (60). Lithium iodide is used as an electrolyte ia selected lithium battery appHcations, where it is formed in situ from reaction of lithium metal with iodine. It can also be a component of low melting molten salts and as a catalyst ia aldol condensations. [Pg.226]

Other Metals. AH the sodium metal produced comes from electrolysis of sodium chloride melts in Downs ceUs. The ceU consists of a cylindrical steel cathode separated from the graphite anode by a perforated steel diaphragm. Lithium is also produced by electrolysis of the chloride in a process similar to that used for sodium. The other alkaH and alkaHne-earth metals can be electrowon from molten chlorides, but thermochemical reduction is preferred commercially. The rare earths can also be electrowon but only the mixture known as mischmetal is prepared in tonnage quantity by electrochemical means. In addition, beryIHum and boron are produced by electrolysis on a commercial scale in the order of a few hundred t/yr. Processes have been developed for electrowinning titanium, tantalum, and niobium from molten salts. These metals, however, are obtained as a powdery deposit which is not easily separated from the electrolyte so that further purification is required. [Pg.175]

The poor efficiencies of coal-fired power plants in 1896 (2.6 percent on average compared with over forty percent one hundred years later) prompted W. W. Jacques to invent the high temperature (500°C to 600°C [900°F to 1100°F]) fuel cell, and then build a lOO-cell battery to produce electricity from coal combustion. The battery operated intermittently for six months, but with diminishing performance, the carbon dioxide generated and present in the air reacted with and consumed its molten potassium hydroxide electrolyte. In 1910, E. Bauer substituted molten salts (e.g., carbonates, silicates, and borates) and used molten silver as the oxygen electrode. Numerous molten salt batteiy systems have since evolved to handle peak loads in electric power plants, and for electric vehicle propulsion. Of particular note is the sodium and nickel chloride couple in a molten chloroalumi-nate salt electrolyte for electric vehicle propulsion. One special feature is the use of a semi-permeable aluminum oxide ceramic separator to prevent lithium ions from diffusing to the sodium electrode, but still allow the opposing flow of sodium ions. [Pg.235]

The PAFC is, however, suitable for stationary power generation, but faces several direct fuel cell competitors. One is the molten carbonate fuel cell (MCFC), which operates at "650°C and uses an electrolyte made from molten potassium and lithium carbonate salts. Fligh-teinperature operation is ideal for stationary applications because the waste heat can enable co-generation it also allows fossil fuels to be reformed directly within the cells, and this reduces system size and complexity. Systems providing up to 2 MW have been demonstrated. [Pg.528]

Attention has been given for some time to the use of lithium alloys as an alternative to elemental lithium. Groups working on batteries with molten salt electrolytes that operate at temperatures of 400-450 °C, well above the melting point of lithium, were especially interested in this possibility. Two major directions evolved. One involved the use of lithium-aluminium alloys [5, 6], whereas another was concerned with lithium-silicon alloys [7-9]. [Pg.361]

A series of experiments have been undertaken to evaluate the relevant thermodynamic properties of a number of binary lithium alloy systems. The early work was directed towards determination of their behavior at about 400 °C because of interest in their potential use as components in molten salt batteries operating in that general temperature range. Data for a number of binary lithium alloy systems at about 400 °C are presented in Table 1. These were mostly obtained by the use of an experimental arrangement employing the LiCl-KCl eutectic molten salt as a lithiumconducting electrolyte. [Pg.363]

Because of the interest in its use in elevated-temperature molten salt electrolyte batteries, one of the first binary alloy systems studied in detail was the lithium-aluminium system. As shown in Fig. 1, the potential-composition behavior shows a long plateau between the lithium-saturated terminal solid solution and the intermediate P phase "LiAl", and a shorter one between the composition limits of the P and y phases, as well as composition-dependent values in the single-phase regions [35], This is as expected for a binary system with complete equilibrium. The potential of the first plateau varies linearly with temperature, as shown in Fig. 2. [Pg.368]

The lithium-silicon system has also been of interest for use in the negative electrodes of elevated-temperature molten salt electrolyte lithium batteries. A composition containing 44 wt.% Li, where Li/Si=3.18, has been used in commercial... [Pg.368]

The major differences between polymer and liquid electrolytes result from the physical stiffness of the PE. PEs are either hard-to-soft solids, or a combination of solid and molten in phases equilibrium. As a result, wetting and contact problems are to be expected at the Li/PE interface. In addition, the replacement of the native oxide layer covering the lithium, under the... [Pg.446]

Room-temperature molten salts are a relatively new subgroup of liquid nonaqueous electrolytes. They share their advantages and disadvantages. Unfortunately, until now, no useful room-temperature molten salt based on lithium cations has been available. [Pg.457]

The electrolyte used in lithium cells, i.e., for aU hthium couples, must be completely anhydrous (< 20 ppm H2O) alkali metals in general are compatible with neutral salt solutions in aprotic solvents or neutral molten salts or solid ion-conductors. [Pg.325]

Tellurium has been tested as a cathode material for use in conjunction with an anode made of alkali metal, primarily lithium, in power sources with a high specific energy and power [99], The theoretical specific energy for Li/Te pair is 612 Wh kg High-temperature (470 °C) cells with Li, Te, and eutectic (LiF-LiCl-Lil) electrolyte in the molten state, or with more convenient, albeit more resistive, paste-type electrolytes, have been tested in the laboratory. Similar layouts have been proposed for utilizing the Li/Se pair (theoretic cal specific energy 1,210 W h kg ) with the cell ingredients in the molten state (365 C) or with paste electrolyte at a lower temperature. [Pg.334]


See other pages where Lithium molten electrolytes is mentioned: [Pg.247]    [Pg.249]    [Pg.247]    [Pg.249]    [Pg.225]    [Pg.565]    [Pg.415]    [Pg.146]    [Pg.246]    [Pg.254]    [Pg.478]    [Pg.61]    [Pg.60]    [Pg.210]    [Pg.622]    [Pg.565]    [Pg.69]    [Pg.545]    [Pg.719]    [Pg.224]    [Pg.144]    [Pg.224]    [Pg.585]    [Pg.308]    [Pg.640]    [Pg.330]    [Pg.331]    [Pg.335]   


SEARCH



Lithium electrolyte

Lithium molten

© 2024 chempedia.info