Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Synthesis lithium enolates

An asymmetric synthesis of estrone begins with an asymmetric Michael addition of lithium enolate (178) to the scalemic sulfoxide (179). Direct treatment of the cmde Michael adduct with y /i7-chloroperbenzoic acid to oxidize the sulfoxide to a sulfone, followed by reductive removal of the bromine affords (180, X = a and PH R = H) in over 90% yield. Similarly to the conversion of (175) to (176), base-catalyzed epimerization of (180) produces an 85% isolated yield of (181, X = /5H R = H). C8 and C14 of (181) have the same relative and absolute stereochemistry as that of the naturally occurring steroids. Methylation of (181) provides (182). A (CH2)2CuLi-induced reductive cleavage of sulfone (182) followed by stereoselective alkylation of the resultant enolate with an allyl bromide yields (183). Ozonolysis of (183) produces (184) (wherein the aldehydric oxygen is by isopropyUdene) in 68% yield. Compound (184) is the optically active form of Ziegler s intermediate (176), and is converted to (+)-estrone in 6.3% overall yield and >95% enantiomeric excess (200). [Pg.436]

Schreiber found that the monoalkylation of the lithium enolate of cyclonona-none with propene oxide could be cleanly effected by addition of AlMe3 to give the y-hydroxy ketone 145, a key intermediate for the synthesis of recifeiolide [69a]. [Pg.297]

An excellent method for the diastereoselective synthesis of substituted amino acids is based on optically active bislactim ethers of cyclodipeptides as Michael donors (Schollkopf method, see Section 1.5.2.4.2.2.4.). Thus, the lithium enolates of bislactim ethers, from amino acids add in a 1,4-fashion to various a,/i-unsaturated esters with high diastereofacial selectivity (syn/anti ratios > 99.3 0.7-99.5 0.5). For example, the enolate of the lactim ether derivative 6, prepared from (S)-valine and glycine, adds in a highly stereoselective manner to methyl ( )-3-phenyl-propenoate a cis/trans ratio of 99.6 0.4 and a syn/anti ratio of 91 9, with respect to the two new stereogenic centers, in the product 7 are found105, los. [Pg.965]

Using 3-substituted cyclohexanones the /rans-diastereoselective synthesis of decalones and octahydro-1 //-indenones may be achieved 164 169. This method has been applied, for instance, in the synthesis of 19-norsteroids. In a related Michael addition the lithium enolate of (R)-5-trimethylsilyl-2-cyclohexenone reacts with methyl 2-propenoate selectively tram to the trimethylsilyl substituent. Subsequent intramolecular ring closure provides a single enantiomer of the bicyclo[2.2.2]octane170 (see also Section 1.5.2.4.4.). [Pg.971]

Methodology for the diastereoselective synthesis of vicinal quaternary and tertiary stereo-genic centers has been developed using the lithium enolate of (4R)-4-rm-butyl-3-methyl-2-ox-etanone183 (see Section 1.5.2.4.1.2.4.). [Pg.971]

This modification was used in the synthesis of (-)-avenaciolide. The key step is the trans-diastereoselective Michael addition of the lithium enolate of tert-butyl 2-(phenylse-leno)propionate (THF, — 78 CC) to (R)-5-octyl-2(5//)-furanone and subsequent trans-diastereoselective iodonation318. u e... [Pg.994]

The lithium enolate of ethyl V-methoxyacetimidate (55) was also successfully sulfmy-lated by treatment with sulfinate ester 19 (equation 19)87. Sulfoxide 56 was used in an asymmetric synthesis of some /1-hydroxy esters. [Pg.69]

An interesting strategy for the diastereoselective synthesis of five-membered carbocycles was achieved by the reaction of alkenylcarbene complexes and lithium enolates derived from simple methyl ketones [79]. The use of more or less coordinating solvents (THF or Et20) or the presence of cosolvents such as PMDTA allows the selective synthesis of one or the other diastereoisomer of the final cyclopentene derivative (Scheme 32). [Pg.83]

Another example of a [2s+2sh-1c+1co] cycloaddition reaction was observed by Barluenga et al. in the sequential coupling reaction of a Fischer carbene complex, a ketone enolate and allylmagnesium bromide [120]. This reaction produces cyclopentanol derivatives in a [2S+2SH-1C] cycloaddition process when -substituted lithium enolates are used (see Sect. 3.1). However, the analogous reaction with /J-unsubstituted lithium enolates leads to the diastereoselective synthesis of 1,3,3,5-tetrasubstituted cyclohexane- 1,4-diols. The ring skeleton of these compounds combines the carbene ligand, the enolate framework, two carbons of the allyl unit and a carbonyl ligand. Overall, the process can be considered as a for-... [Pg.112]

Among the preformed enol derivatives used in this way have been enolates of magnesium, lithium, titanium, zirconium, and tin, ° silyl enol ethers, enol borinates,and enol borates, R CH=CR"—OB(OR)2. The nucleophilicity of silyl enol ethers has been examined. In general, metallic Z enolates give the syn (or erythro) pair, and this reaction is highly useful for the diastereoselective synthesis of these products. The ( ) isomers generally react nonstereoselectively. However, anti (or threo) stereoselectivity has been achieved in a number of cases, with titanium enolates, with magnesium enolates, with certain enol bor-inates, and with lithium enolates at — 78°C. ... [Pg.1221]

The same elimination strategy was used for the synthesis of the natural product (i )-(-)-dysidazirine 15 as is shown in Scheme 10 [23]. The requisite aziri-dine ester was prepared by treatment of sulfimine 19 with the lithium enolate of methyl bromoacetate. This reaction is a Darzens-type condensation leading to czs-M-sulfinylaziridine ester 20. The elimination of sulfenate was accomplished in the same manner as mentioned above (see Scheme 9). The natural product 15 (see Fig. 1) was obtained in 42% yield. Attempts to prepare azirinomycin 14 in a similar fashion all failed [23]. [Pg.101]

For enolates with additional functional groups, chelation may influence stereoselectivity. Chelation-controlled alkylation has been examined in the context of the synthesis of a polyol lactone (-)-discodermolide. The lithium enolate 4 reacts with the allylic iodide 5 in a hexane THF solvent mixture to give a 6 1 ratio favoring the desired stereoisomer. Use of the sodium enolate gives the opposite stereoselectivity, presumably because of the loss of chelation.61 The solvent seems to be quite important in promoting chelation control. [Pg.28]

Entry 5, where the same stereochemical issues are involved was used in the synthesis of (+)-discodermolide. (See Section 13.5.6 for a more detailed discussion of this synthesis.) There is a suggestion that this entry involves a chelated lithium enolate and there are two stereogenic centers in the aldehyde. In the next section, we discuss how the presence of stereogenic centers in both reactants affects stereoselectivity. [Pg.107]

Palladium-catalyzed bis-silylation of methyl vinyl ketone proceeds in a 1,4-fashion, leading to the formation of a silyl enol ether (Equation (47)).121 1,4-Bis-silylation of a wide variety of enones bearing /3-substituents has become possible by the use of unsymmetrical disilanes, such as 1,1-dichloro-l-phenyltrimethyldisilane and 1,1,1-trichloro-trimethyldisilane (Scheme 28).129 The trimethylsilyl enol ethers obtained by the 1,4-bis-silylation are treated with methyllithium, generating lithium enolates, which in turn are reacted with electrophiles. The a-substituted-/3-silyl ketones, thus obtained, are subjected to Tamao oxidation conditions, leading to the formation of /3-hydroxy ketones. This 1,4-bis-silylation reaction has been extended to the asymmetric synthesis of optically active /3-hydroxy ketones (Scheme 29).130 The key to the success of the asymmetric bis-silylation is to use BINAP as the chiral ligand on palladium. Enantiomeric excesses ranging from 74% to 92% have been attained in the 1,4-bis-silylation. [Pg.745]

The study of Fuji et al. shows that the addition of lithium enolate 75 to ni-troamine 74 is readily reversible quenching conditions are thus essential for getting a good yield of product 76. An equilibrium mixture of the adducts exists in the reaction mixture, and the elimination of either the prolinol or lactone moiety can take place depending on the workup condition (Scheme 2-34). A feature of this asymmetric synthesis is the direct one pot formation of the enantiomer with a high ee value. One application of this reaction is the asymmetric synthesis of a key intermediate for indole type Aspidosperma and Hun-teria alkaloids.68 Fuji69 has reviewed the asymmetric creation of quaternary carbon atoms. [Pg.101]

Amination. Three laboratories2-4 have reported use of esters of azodicarbox-ylic acid for amination of chiral substrates to provide a synthesis of optically active a-hydrazino and a-amino acids. The di-r-butyl ester is particularly useful because the diastereoselectivity improves with increasing size of the ester group, and in addition these esters are hydrolyzed by TFA at 25°. Two laboratories21 used the lithium enolates of chiral N-acyloxazolidones (2) as the chiral precursors. A typical procedure is outlined in equation (I). Thus reaction of the lithium enolate of 2... [Pg.115]

The nucleophilic carbon centres of lithium enolates may also be pyrami-dalized, though there is little experimental evidence of this (Seebach et al., 1985, 1991). Silyl enol ethers are generally planar, but two (67 R = Ph and OMe] derived from an imidazolidinone used in amino acid synthesis show... [Pg.132]

Three tactical approaches were surveyed in the evolution of our program. As outlined in Scheme 2.7, initially the aldol reaction (Path A) was performed direcdy between aldehyde 63 and the dianion derived from tricarbonyl 58. In this way, it was indeed possible to generate the Z-lithium enolate of 58 as shown in Scheme 2.7 which underwent successful aldol condensation. However, the resultant C7 P-hydroxyl functionality tended to cyclize to the C3 carbonyl group, thereby affording a rather unmanageable mixture of hydroxy ketone 59a and lactol 59b products. Lac-tol formation could be reversed following treatment of the crude aldol product under the conditions shown (Scheme 2.7) however, under these conditions an inseparable 4 1 mixture of diastereomeric products, 60 (a or b) 61 (a or b) [30], was obtained. This avenue was further impeded when it became apparent that neither the acetate nor TES groups were compatible with the remainder of the synthesis. [Pg.19]

Traditional models for diastereoface selectivity were first advanced by Cram and later by Felkin for predicting the stereochemical outcome of aldol reactions occurring between an enolate and a chiral aldehyde. [37] During our investigations directed toward a practical synthesis of dEpoB, we were pleased to discover an unanticipated bias in the relative diastereoface selectivity observed in the aldol condensation between the Z-lithium enolate B and aldehyde C, Scheme 2.6. The aldol reaction proceeds with the expected simple diastereoselectivity with the major product displaying the C6-C7 syn relationship shown in Scheme 2.7 (by ul addition) however, the C7-C8 relationship of the principal product was anti (by Ik addition). [38] Thus, the observed symanti relationship between C6-C7 C7-C8 in the aldol reaction between the Z-lithium enolate of 62 and aldehyde 63 was wholly unanticipated. These fortuitous results prompted us to investigate the cause for this unanticipated but fortunate occurrence. [Pg.22]

Recently, the improved chiral ethyl ketone (5)-141, derived in three steps from (5)-mandelic acid, has been evaluated in the aldol process (115). Representative condensations of the derived (Z)-boron enolates (5)-142 with aldehydes are summarized in Table 34b, It is evident from the data that the nature of the boron ligand L plays a significant role in enolate diastereoface selection in this system. It is also noteworthy that the sense of asymmetric induction noted for the boron enolate (5)-142 is opposite to that observed for the lithium enolate (5)-139a and (5>139b derived from (S)-atrolactic acid (3) and the related lithium enolate 139. A detailed interpretation of these observations in terms of transition state steric effects (cf. Scheme 20) and chelation phenomena appears to be premature at this time. Further applications of (S )- 41 and (/ )-141 as chiral propionate enolate synthons for the aldol process have appeared in a 6-deoxyerythronolide B synthesis recently disclosed by Masamune (115b). [Pg.85]


See other pages where Synthesis lithium enolates is mentioned: [Pg.528]    [Pg.528]    [Pg.122]    [Pg.215]    [Pg.650]    [Pg.296]    [Pg.296]    [Pg.56]    [Pg.144]    [Pg.70]    [Pg.1184]    [Pg.270]    [Pg.218]    [Pg.23]    [Pg.233]    [Pg.85]    [Pg.184]    [Pg.70]    [Pg.236]   
See also in sourсe #XX -- [ Pg.100 ]

See also in sourсe #XX -- [ Pg.100 ]

See also in sourсe #XX -- [ Pg.100 ]




SEARCH



Additives, enolate synthesis, lithium diisopropylamide

Conjugate addition reactions lithium enolate synthesis

Elimination reactions lithium enolate synthesis

Enantioselectivity lithium enolate synthesis

Enol esters lithium enolate synthesis

Enol ethers lithium enolate synthesis

Enol synthesis

Enolate lithium

Enolate synthesis

Enolates lithium

Lithium dialkylcuprates enolate synthesis

Lithium enolates in synthesis

Lithium synthesis

Oxidation lithium enolate synthesis

Reduction lithium enolate synthesis

Stereoselectivity lithium enolate synthesis

Synthesis enolates

© 2024 chempedia.info