Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Substituted cyclohexanones

The piperidine, pyrrolidine, and morpholine enamines of cyclohexanone substituted in the 3-position by methyl, phenyl, and l-butyl have been prepared (49). The complexity of the NMR spectra in the ethylenic hydrogen region indicated a mixture of isomeric enamines. Estimation of the per cent of each isomer by examination of the NMR spectra was not possible, nor were the isomeric enamines separable by vapor-phase chromatography. [Pg.65]

Similar to cyclohexanones, substituted cyclopentanones also adopt a conformation with the substituents in a sterically favorable position. In the case of 2-substituted cyclopentanones 1 the substituent occupies a pseudoequatorial position and the diastereoselectivity of nucleophilic addition reactions to 1 is determined by the relative importance of the interactions leading to predominant fra s(equatorial) or cw(axial) attack of the nucleophile. When the nucleophile approaches from the cis side, steric interaction with the substituent at C-2 is encountered. On the other hand, according to Felkin, significant torsional strain between the pseudoaxial C-2—H bond and the incipient bond occurs if the nucleophile approaches the carbonyl group from the trans side. [Pg.14]

The absolute configuration of a chair cyclohexanone substituted in the a or fi position (I) can be determined with the aid of increments calculated from experimental data (Table 1). [Pg.501]

Cyclohexanones substituted with heteroatoms in the ring behave similarly to their carbo-cyclic analogs, if the heteroatom is in the symmetry plane both 2 and 330 31, 4 and 532, as well as 6 and 733 display pairwise n-n Cotton effects of the same sign. [Pg.502]

Wu, Y.-D. Tucker, J. A. Houk, K. N. Stereoselectivities of nucleophilic additions to cyclohexanones substituted by polar groups. Experimental investigation of reductions of trans-decalones and theoretical studies of cyclohexanone reductions. The influence of remote electrostatic effects, J. Am. Chem. Soc. 1991,113, 5018-5027. [Pg.439]

St. Jacques and his co-workers 121,122) have found that barriers to ring inversion in some cyclohexanones substituted with gem-dimethyl groups are higher than in the parent compound, that in 2 2,5,5-tetramethylcyclo-hexanone being 8.1 kcal/mol i )-). These workers conclude that the enhanced barriers are due to non-bonded interactions of the substituents in the transition state ), and by a comparison of results with those for methyl-enecyclohexanes (vide infra) place the barrier to inversion of the cyclohexanone ring itself between 4.5 and 5 kcal/mol. [Pg.160]

The formation of the bicyclo[3.1.0]hexane ring system, found in the thujane terpenes for example, can also involve intramolecular anionic displacement from a cyclohexanone substituted in the 4-position by a leaving group. [Pg.1176]

Muthusamy and co-workers have demonstrated [82] the reactions of the bicyclic ylide 57, generated from the diazocarbonyl compoimd 56, with symmetrical and unsymmetrical dipolarophiles. Thus, exposure of the cyclohexanone-substituted a-diazocarbonyl compound 56 to DMAD in the presence of Rh2(OAc)4 as the catalyst has furnished the cycloadduct 58 (Scheme 16). This cycloaddition was diastereoselective and, in the case of unsymmetrical dipolarophiles such as methyl methacrylate and propargyl bromide, they were regioselective and afforded oxygen heterocycles 59 and 60, respectively. The same research group has reported the 1,3-dipolar cycloaddition of the bicyclic carbonyl yUde 57 with other dipolarophiles, namely fulvenes [83]. In these tandem cycUzation-cycloaddition reactions involving fulvenes, four stereocenters and two new C-C bonds are formed in a single step. Symmetrical dipolarophiles such as macrocycHc olefins were also used for diastereoselective 1,3-dipolar cycloaddition reaction with 56 [84]. [Pg.168]

Acetone ethyl methyl ketone diethyl ketone acetophenone, ben-zophenone (and their nuclear-substituted derivatives). Cyclohexanone. [Pg.345]

Synthetically useful stereoselective reductions have been possible with cyclic carbonyl compounds of rigid conformation. Reduction of substituted cyclohexanone and cyclopentan-one rings by hydrides of moderate activity, e.g. NaBH (J.-L. Luche, 1978), leads to alcohols via hydride addition to the less hindered side of the carbonyl group. Hydrides with bulky substituents 3IQ especially useful for such regio- and stereoselective reductions, e.g. lithium hydrotri-t-butoxyaluminate (C.H. Kuo, 1968) and lithium or potassium tri-sec-butylhydro-borates or hydrotri-sec-isoamylborates (=L-, K-, LS- and KS-Selectrides ) (H.C. Brown, 1972 B C.A. Brown, 1973 S. Krishnamurthy, 1976). [Pg.107]

Reactions. The chemical properties of cyanoacetates ate quite similar to those of the malonates. The carbonyl activity of the ester function is increased by the cyano group s tendency to withdraw electrons. Therefore, amidation with ammonia [7664-41-7] to cyanoacetamide [107-91-5] (55) or with urea to cyanoacetylurea [448-98-2] (56) proceeds very easily. An interesting reaction of cyanoacetic acid is the Knoevenagel condensation with aldehydes followed by decarboxylation which leads to substituted acrylonitriles (57) such as (29), or with ketones followed by decarboxylation with a shift of the double bond to give P,y-unsaturated nitriles (58) such as (30) when cyclohexanone [108-94-1] is used. [Pg.470]

The type of synthesis in which the two-atom fragment supplies C-5 + C-6 is uncommon but useful in preparing pyrimidine- and 5,6,7,8-tetrahydroquinazoline-2,4-diamines. Thus, dicyandiamide (S78) with benzyl methyl ketone (S77) yields 6-methyl-5-phenylpyrimidine-2,4-diamine (S79), or with acetophenone it yields 6-phenylpyrimidine-2,4-diamine (62JOC2708). Likewise, with cyclohexanone it yields the tetrahydroquinazolinediamine (SSO) and by using N- substituted dicyandiamides, 2- and/or 4-alkylamino groups may be introduced (65JOC1837). [Pg.111]

Reactions of 6-aminouracils with various 2-substituted cyclohexanones such as the aldehyde (264) give reduced pyrimido[4,5-f ]quinolines (265) (57BRP774095, 58JA3449), and other cyclohexanone derivatives used include the 2-dimethylaminomethyl (Mannich) bases (78AP542) and the 5-benzylidenedimedones (266) formed in situ from dimedone and aldehydes (67KGS395, cf. 67KGS406). [Pg.231]

Formation of a 1,2-disubstituted hydrazine by acid hydrolysis of an appropriately substituted pyrazolidine has been noted (67HC(22)l), but the most interesting ring fission of pyrazolidines involves the N(l)—N(2) bond of 1-phenylpyrazolidines (421). If, instead of phenylhydrazone, compound (421) is used in the Fischer indole synthesis, N- aminopropylin-doles are formed (73T4045). Scheme 39 shows the reaction with cyclohexanone. [Pg.256]

This synthesis works especially well with cyclohexanone giving 80% oxaziridines with either chloramine (77JPR195) or (V-chloromethylamine. Simple aliphatic ketones and ortho substituted aromatic aldehydes yield 30-50% oxaziridines with N-chloromethylamine (65CB2516). [Pg.229]

A number of studies of the acid-catalyzed mechanism of enolization have been done. The case of cyclohexanone is illustrative. The reaction is catalyzed by various carboxylic acids and substituted ammonium ions. The effectiveness of these proton donors as catalysts correlates with their pK values. When plotted according to the Bronsted catalysis law (Section 4.8), the value of the slope a is 0.74. When deuterium or tritium is introduced in the a position, there is a marked decrease in the rate of acid-catalyzed enolization h/ d 5. This kinetic isotope effect indicates that the C—H bond cleavage is part of the rate-determining step. The generally accepted mechanism for acid-catalyzed enolization pictures the rate-determining step as deprotonation of the protonated ketone ... [Pg.426]

The rho values (2.78 overall, 3.78 for reduction to the cis product and 1.96 for reduction to the trans), determined from a study of the rates of reduction with NaBH4 of a series of 4-substituted cyclohexanones, have been interpreted as supporting a transition state late in the reaction.Other groups have observed positive rho values (2.5 to 3.1) for the reduction with NaBH4 of fluorenones and acetophenones. These results show clearly... [Pg.66]

Some instances of incomplete debromination of 5,6-dibromo compounds may be due to the presence of 5j5,6a-isomer of wrong stereochemistry for anti-coplanar elimination. The higher temperature afforded by replacing acetone with refluxing cyclohexanone has proved advantageous in some cases. There is evidence that both the zinc and lithium aluminum hydride reductions of vicinal dihalides also proceed faster with diaxial isomers (ref. 266, cf. ref. 215, p. 136, ref. 265). The chromous reduction of vicinal dihalides appears to involve free radical intermediates produced by one electron transfer, and is not stereospecific but favors tra 5-elimination in the case of vic-di-bromides. Chromous ion complexed with ethylene diamine is more reactive than the uncomplexed ion in reduction of -substituted halides and epoxides to olefins. ... [Pg.340]

Nelson and Scliut investigated the reaction of 5a-cholestanone (lb) with diazomethane in a search for a direct, one-step preparation of A-homo ketones. Using a large excess of diazomethane generated in situ from A-methyl-nitrosourea with potassium hydroxide in ether-methanol at 0°, 5a-cholestanone (lb) is converted into the 7-membered ring homolog (3b) as the predominant product. Both theoretically possible A-homo ketones can be expected with an unsymmetrically-substituted cyclohexanone such as 5a-cholestanone (lb). [Pg.356]

Tn general. Nelson and Schut s procedure is recommended for expansion of an unsymmetrically substituted cyclohexanone (for example, the A ring of a steroid 3-ketone). The yield is satisfactory in most instances and the precursors are readily available. However, the relative proportions of the two possible ketones may change as substituents are varied. The procedure is applicable to systems with additional ketones protected as ketals, double bonds, ethers and hydroxyl groups. [Pg.373]

This condensation finds considerable generality, enol silyl ethers of a variety of ketones and both aromatic and aliphatic aldehydes are usable For enol silyl ethers of substituted cyclohexanones the reaction is regio- and stereospecific [id]. [Pg.944]

The presence of 1,3-diaxial interaction between the C-2 alkyl group and the C-4 axial hydrogen atom is reflected in the rate of enamine formation of 2-substituted cyclohexanone. It has been shown by Hunig and Salzwedel (20) that even under forcing conditions, the yield of pyrrolidine and morpholine enamines of 2-methylcyclohexanone does not exceed 58%, whereas the C-2 unsubstituted ketones underwent enamine formation under rather milder conditions in better than 80 % yield. [Pg.11]

Risaliti et al. (22), have shown that in the addition of the electrophilic olefins to the enamines of cyclohexanone, the formation of the less substituted enamine is favored when a bulky group is present at the electrophilic carbon atom. For instance, the reaction of (8-nitrostyrene with the morpholine enamine of cyclohexanone gave only the trisubstituted isomer (30) with the substituent in the axial orientation (23). The product on hydrolysis led to the ketone (31) to which erythro configuration was assigned on the grounds illustrated in Scheme 3 (24). [Pg.11]

In a similar manner the addition of ethyl azodicarboxylate to the morpholine enamine of cyclohexanone furnished the less substituted isomer (34) with the substituent in the axial orientation (2, 26). [Pg.13]

Reaction of the pyrrolidine enamine of cyclohexanone with phenyl vinyl sulfone afforded a 9 1 mixture of the tri- and tetrasubstituted isomers (2(5). The preference of the less substituted isomer in this case is in keeping with the greater overlap requirement between the n electrons of the double bond and the electron pair on the nitrogen atom, since the double bond exo to the five-membered ring is much more favored than the double bond exo to the six-membered ring. It is, however, hard to explain the formation of largely the trisubstituted isomer with the piperidine enamine of cyclohexanone, where both of the rings involved are six-membered. [Pg.16]

Campbell and Jung (34) have reported that the reaction of 2 moles of o-halo-substituted benzoyl chloride with the morpholine enamine of cyclohexanone gave the corresponding 2,2-dibenzoyI derivative (57). [Pg.21]

A substituted a,/3-unsaturated aldehyde, cinnamaldehyde, has been observed to undergo the same type of two-step 1,3-cycloaddition reaction with a cyclohexanone enamine as acrolein does, forming in this case a stereo-isomeric mixture of substituted bicycloaminoketones in excellent yield (29a,31a,31b). [Pg.218]

The reactions of pyrrolidinocyelohexenes with acid have also been Considered from a stereochemical point of view. Deuteration of the 2-methylcyclohexanone enamine gave di-2-deuterio-6-methylcyclohexanone under conditions where ds-4-/-butyI-6-methyIpyrrolidinocycIohexene was not deuterated (2J4). This experiment supported the postulate of Williamson (2JS), which called for the axial attack of an electrophile and axial orientation of the 6 substituent on an aminocyclohexene in the transition state of such enamine reactions. These geometric requirements explain the more difficult alkylation of a cyclohexanone enamine on carbon 2, when it is substituted at the 6 position, as compared with the unsubstituted case. [Pg.345]

The arylation of morpholinocyclohexene with 2- or 4-chloroquinoline N-oxide or 4-chloropyridine N-oxide and benzoyl chloride led to cyclohexanone a-substituted with the respective chloroquinolines or 4-chloropyridine (691). 2,4-Dinitrofluorobenzene reacted with 2-benzylidene-3-methylbenzothiazoline to give the enamine arylation product (672). [Pg.383]

In the acylation of enamines derived from 3-substituted cyclohexanones, 6-acylated products were favored over 2-acylated products (398), thus revealing another selective enamine reaction sequence. The use of oxalyl bromide for the acylation of enamines has also been described (399). [Pg.389]

Recendy, Darzens reaction was investigated for its synthetic applicability to the condensation of substituted cyclohexanes and optically active a-chloroesters (derived from (-)-phenylmenthol). In this report, it was found that reaction between chloroester 44 and cyclohexanone 43 provided an 84% yield with 78 22 selectivity for the axial glycidic ester 45 over equatorial glycidic ester 46 both having the R configuration at the epoxide stereocenter. [Pg.19]


See other pages where Substituted cyclohexanones is mentioned: [Pg.48]    [Pg.48]    [Pg.48]    [Pg.211]    [Pg.422]    [Pg.48]    [Pg.48]    [Pg.48]    [Pg.211]    [Pg.422]    [Pg.285]    [Pg.317]    [Pg.319]    [Pg.391]    [Pg.389]    [Pg.426]    [Pg.349]    [Pg.590]    [Pg.71]    [Pg.72]    [Pg.17]    [Pg.397]    [Pg.215]   
See also in sourсe #XX -- [ Pg.284 ]




SEARCH



4-Substituted cyclohexanones, conformational

Cyclohexanone enamines substituted

Cyclohexanone isotopically substituted

Cyclohexanone prochiral 4-substituted

Cyclohexanone thiolate substitution

Cyclohexanone, 4-substituted

Cyclohexanone, 4-substituted

Cyclohexanone, 4-substituted reductive amination

Cyclohexanone, 4-substituted selectivity

Cyclohexanones halo-substituted

Cyclohexanones, 4-substituted reductive amination

Cyclohexanones, 4-substituted selectivity

Four-substituted cyclohexanone

Four-substituted cyclohexanone derivatives

Phenyl substituted cyclohexanones

Stereoselective synthesis of substituted cyclohexanone cyanohydrins

Substituted phenols cyclohexanones from

© 2024 chempedia.info