Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enol esters lithium enolate synthesis

It has been shown that the Claisen rearrangement of lithium enolates of amino acid enynol esters allows the synthesis of very sensitive y, 5-unsaturated amino acids with conjugated enyne side chains.The chelate-enolate Claisen rearrangement has also been applied to the synthesis of unsaturated polyhydroxylated amino acids, polyhydroxylated piperidines, and unsaturated peptides. ... [Pg.516]

Alpha hydrogen atoms of carbonyl compounds are weakly acidic and can be removed by strong bases, such as lithium diisopropylamide (LDA), to yield nucleophilic enolate ions. The most important reaction of enolate ions is their Sn2 alkylation with alkyl halides. The malonic ester synthesis converts an alkyl halide into a carboxylic acid with the addition of two carbon atoms. Similarly, the acetoacetic ester synthesis converts an alkyl halide into a methyl ketone. In addition, many carbonyl compounds, including ketones, esters, and nitriles, can be directly alkylated by treatment with LDA and an alkyl halide. [Pg.866]

In spite of their intrinsic synthetic potential, addition reactions of metal enolates of non-stabilized esters, amides, and ketones to epoxides are not widely used in the synthesis of complex molecules. Following the seminal work of Danishefsky [64], who introduced the use of Et2AlCl as an efficient catalyst for the reaction, Taylor obtained valuable spiro lactones through the addition reaction of the lithium eno-late of tert-butyl acetate to spiro-epoxides, upon treatment of the corresponding y-... [Pg.295]

An excellent method for the diastereoselective synthesis of substituted amino acids is based on optically active bislactim ethers of cyclodipeptides as Michael donors (Schollkopf method, see Section 1.5.2.4.2.2.4.). Thus, the lithium enolates of bislactim ethers, from amino acids add in a 1,4-fashion to various a,/i-unsaturated esters with high diastereofacial selectivity (syn/anti ratios > 99.3 0.7-99.5 0.5). For example, the enolate of the lactim ether derivative 6, prepared from (S)-valine and glycine, adds in a highly stereoselective manner to methyl ( )-3-phenyl-propenoate a cis/trans ratio of 99.6 0.4 and a syn/anti ratio of 91 9, with respect to the two new stereogenic centers, in the product 7 are found105, los. [Pg.965]

An efficient synthesis of optically active pentanedioates is possible using ester enolates based on chiral alcohols. This is illustrated by the addition of the lithium (fl-cnolate of (1 R,2S,5R)-5-methyl-2-(1-methyl-l-phenylethyl)cyclohexyl propanedioate to methyl ( )-2-butenoate at — 100 °C which shows simple and induced diastereoselectivity. [Pg.972]

Oxo esters are accessible via the diastereoselective 1,4-addition of chiral lithium enamine 11 as Michael donor. The terr-butyl ester of L-valine reacts with a / -oxo ester to form a chiral enamine which on deprotonation with lithium diisopropylamide results in the highly chelated enolate 11. Subsequent 1,4-addition to 2-(arylmethylene) or 2-alkylidene-l,3-propanedioates at — 78 °C, followed by removal of the auxiliary by hydrolysis and decarboxylation of the Michael adducts, affords optically active -substituted <5-oxo esters232 (for a related synthesis of 1,5-diesters, see Section 1.5.2.4.2.2.1.). In the same manner, <5-oxo esters with contiguous quaternary and tertiary carbon centers with virtually complete induced (> 99%) and excellent simple diastereoselectivities (d.r. 93 7 to 99.5 0.5) may be obtained 233 234. [Pg.984]

The lithium enolate of ethyl V-methoxyacetimidate (55) was also successfully sulfmy-lated by treatment with sulfinate ester 19 (equation 19)87. Sulfoxide 56 was used in an asymmetric synthesis of some /1-hydroxy esters. [Pg.69]

The same elimination strategy was used for the synthesis of the natural product (i )-(-)-dysidazirine 15 as is shown in Scheme 10 [23]. The requisite aziri-dine ester was prepared by treatment of sulfimine 19 with the lithium enolate of methyl bromoacetate. This reaction is a Darzens-type condensation leading to czs-M-sulfinylaziridine ester 20. The elimination of sulfenate was accomplished in the same manner as mentioned above (see Scheme 9). The natural product 15 (see Fig. 1) was obtained in 42% yield. Attempts to prepare azirinomycin 14 in a similar fashion all failed [23]. [Pg.101]

Nitroalkenes react with lithium dianions of carboxylic acids or with hthium enolates at -100 °C, and subsequent treatment of the Michael adducts with aqueous acid gives y-keto acids or esters in a one-pot operation, respectively (Eq. 4.52).66 The sequence of Michael addition to nitroalkenes and Nef reaction (Section 6.1) provides a useful tool for organic synthesis. For example, the addition of carbanions derived from sulfones to nitroalkenes followed by the Nef reaction and elimination of the sulfonyl group gives a,P-unsaturated ketones (Eq. 4.53).67... [Pg.87]

The addition of lithium or magnesium ester enolates to nitrones in THF at 78°C or in Et20 at — 20°C, constitutes a direct synthesis of /V-hydroxy- 3-amino acid esters (Scheme 2.180) (645). [Pg.276]

The stereoselective total synthesis of both ( )-corynantheidine (61) (170,171) (alio stereoisomer) and ( )-dihydrocorynantheine (172) (normal stereoisomer) has been elaborated by Szdntay and co-workers. The key intermediate leading to both alkaloids was the alio cyanoacetic ester derivative 315, which was obtained from the previously prepared ketone 312 (173) by the Knoevenagel condensation accompanied by complete epimerization at C-20 and by subsequent stereoselective sodium borohydride reduction. ( )-Corynantheidine was prepared by modification of the cyanoacetate side chain esterification furnished diester 316, which underwent selective lithium aluminum hydride reduction. The resulting sodium enolate of the a-formyl ester was finally methylated to racemic corynantheidine (171). [Pg.198]

Amination. Three laboratories2-4 have reported use of esters of azodicarbox-ylic acid for amination of chiral substrates to provide a synthesis of optically active a-hydrazino and a-amino acids. The di-r-butyl ester is particularly useful because the diastereoselectivity improves with increasing size of the ester group, and in addition these esters are hydrolyzed by TFA at 25°. Two laboratories21 used the lithium enolates of chiral N-acyloxazolidones (2) as the chiral precursors. A typical procedure is outlined in equation (I). Thus reaction of the lithium enolate of 2... [Pg.115]

Further variations of the Claisen rearrangement protocol were also utilized for the synthesis of allenic amino acid derivatives. Whereas the Ireland-Claisen rearrangement led to unsatisfactory results [133b], a number of variously substituted a-allenic a-amino acids were prepared by Kazmaier [135] by chelate-controlled Claisen rearrangement of ester enolates (Scheme 18.47). For example, deprotonation of the propargylic ester 147 with 2 equiv. of lithium diisopropylamide and transmetallation with zinc chloride furnished the chelate complex 148, which underwent a highly syn-stereoselective rearrangement to the amino acid derivative 149. [Pg.1027]

In the late 1960s, methods were developed for the synthesis of alkylated ketones, esters, and amides via the reaction of trialkyl-boranes with a-diazocarbonyl compounds (50,51), halogen-substituted enolates (52), and sulfur ylids (53) (eqs. [33]-[35]). Only one study has addressed the stereochemical aspects of these reactions in detail. Masamune (54) reported that diazoketones 56 (Ri = CH3, CH2Ph, Ph), upon reaction with tributylborane, afford almost exclusively the ( )-enolate, in qualitative agreement with an earlier report by Pasto (55). It was also found that E) - (Z)-enolate isomerization could be accomplished with a catalytic amount of lithium phenoxide (CgHg, 16 hr, 22°C) (54). [Pg.39]


See other pages where Enol esters lithium enolate synthesis is mentioned: [Pg.5]    [Pg.438]    [Pg.431]    [Pg.650]    [Pg.296]    [Pg.320]    [Pg.320]    [Pg.4]    [Pg.270]    [Pg.88]    [Pg.187]    [Pg.233]    [Pg.236]    [Pg.193]    [Pg.294]    [Pg.853]    [Pg.8]   
See also in sourсe #XX -- [ Pg.542 , Pg.543 , Pg.544 , Pg.545 , Pg.546 , Pg.547 , Pg.548 , Pg.549 , Pg.551 ]




SEARCH



Enol esters

Enol synthesis

Enolate lithium

Enolate synthesis

Enolates enol esters

Enolates lithium

Ester enolate

Esters enolates

Esters enolization

Esters lithium enolates

Lithium enolates synthesis

Lithium ester enolate

Lithium esters

Lithium synthesis

Synthesis enolates

© 2024 chempedia.info