Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lithium, atomic emission

Extremely stringent lower limits were reported by Rank (29) in 1968. A spectroscopic detection of the Lyman a(2 p - 1 s) emission line of the quarkonium atom (u-quark plus electron) at 2733 A was expected to be able to show less than 3 108 positive quarks, to be compared with 1010 lithium atoms detected by 2 p - 2 s emission at 6708 A. With certain assumptions (the reader is referred to the original article), less than one quark was found per 1018 nucleons in sea water and 1017 nucleons in seaweed, plankton and oysters. Classical oil-drop experiments (with four kinds of oil light mineral, soya-bean, peanut and cod-liver) were interpreted as less than one quark per 1020 nucleons. Whereas a recent value (18) for deep ocean sediments was below 10 21 per nucleon, much more severe limits were reported (30) in 1966 for sea water (quark/nucleon ratio below 3 10-29) and air (below 5 10-27) with certain assumptions about concentration before entrance in the mass spectrometer. At the same time, the ratio was shown to be below 10 17 for a meteorite. Cook etal. (31) attempted to concentrate quarks by ion-exchange columns in aqueous solution, assuming a position of elution between Na+ and Li+. As discussed in the next section, cations with charge + 2/3 may be more similar to Cs+. Anyhow, values below 10 23 for the quark to nucleon ratio were found for several rocks (e.g., volcanic lava) and minerals. It is clear that if such values below a quark per gramme are accurate, we have a very hard time to find the object but it needs a considerably sophisticated technique to be certain that available quarks are not lost before detection. [Pg.31]

In the inductively coupled plasma atomic emission spectroscopy (ICPAES) method (ASTM DD 5600), a sample of petroleum coke is ashed at 700°C (1292°F) and the ash is fused with lithium borate. The melt is dissolved in dilute hydrochloric acid, and the resulting solution is analyzed by inductively coupled plasma atomic emission spectroscopy using aqueous calibration standards. Because of the need to fuse the ash with lithium borate or other suitable salt, the fusibility of ash may need attention (ASTM D1857). [Pg.301]

Trace element analysis was carried out on the ash by fusing with lithium metaborate, followed by dissolution in 10 % hydrochloric acid. The resulting solution was analysed using atomic emission and absorption spectrometry (AA). The method has been described previously (9). [Pg.255]

Atomic emission spectroscopy plays an important role in the control of sodium, potassium and lithium in a number of raw materials and formulations. [Pg.119]

Fig. 2-9.—Energy levels for the lithium atom, showing the separation of the doublet levels and the transitions accompanying absorption and emission of radiant energy. Fig. 2-9.—Energy levels for the lithium atom, showing the separation of the doublet levels and the transitions accompanying absorption and emission of radiant energy.
Figure 7 illustrates the usefulness of this optical arrangement. Radiation from a multielement hollow cathode lamp containing Mn and Cr was allowed to fall on one fiber-optic strand. Radiation from a second hollow cathode lamp containing Li was incident on a second fiber optic strand. Individual and composite spectra are shown in the figure. With this optical system, lithium can be determined simultaneously with Cr and Mn by atomic emission, or lithium could be used as an internal standard for the analysis. To do this with a conventional one-dimensional dispersive system would require a wavelength window from 403 nm to 671 nm, resulting in poor resolution. [Pg.51]

Excited lithium atoms emit light strongly at a wavelength of 671 nm. This emission predominates when lithium atoms are excited in a flame. Predict the color of the flame. [Pg.164]

Inductively coupled plasma atomic emission spectrometry (ICP-AES) was used for the determination of most major and trace elements. The samples are fused in a Claisse semi-automatic fusion device in Pt-Au crucibles with lithium metaborate (4). The fusion product is dissolved in diluted HNO and brought to volume. For trace elements determination the sample is decomposed by HF, HNOg and HCIO. Scandium serves as an internal standard and is added to all samples and solutions. The instrument (product of Jobin Yvon, France)is calibrated using multi-element synthetic standards. The aqueous solutions are nebulized and injected into the heart of a plasma fire ball. A computerized multi-channel vacuum spectrometer has been programmed for multi-element analysis. [Pg.94]

Figure 6 Partitioning of LiCl between water and 1-octanol at 25°C, as taken from ref. [2l6]. The lithium distribution ratios Du were determined at 1 1 initial phase ratio by use of ion chromatography (IC), inductively coupled plasma (ICP) atomic emission spectrometry, and Li NMR spectrometry. A correction was made for the slight volume changes due to the mutual solubility of 1-octanol and water. Error bars are indicated only for the ICP data, which were the least precise data obtained by the three techniques. The solid curved line represents the equilibrium model calculated by SXLSQl using the values of log/Cs= = —6.85 and logX, = — 2.74 (Table 12). The dashed curved line is an extrapolation of the model to indicate the approach to the calculated asymptotic value of the distribution ratio at infinite dilution (3.76 X 10... Figure 6 Partitioning of LiCl between water and 1-octanol at 25°C, as taken from ref. [2l6]. The lithium distribution ratios Du were determined at 1 1 initial phase ratio by use of ion chromatography (IC), inductively coupled plasma (ICP) atomic emission spectrometry, and Li NMR spectrometry. A correction was made for the slight volume changes due to the mutual solubility of 1-octanol and water. Error bars are indicated only for the ICP data, which were the least precise data obtained by the three techniques. The solid curved line represents the equilibrium model calculated by SXLSQl using the values of log/Cs= = —6.85 and logX, = — 2.74 (Table 12). The dashed curved line is an extrapolation of the model to indicate the approach to the calculated asymptotic value of the distribution ratio at infinite dilution (3.76 X 10...
Sodium and potassium in serum are determined in the clinical laboratory by atomic-emission spectroscopy, using an instrument designed specifically for this purpose [5]. Two filter monochromators isolate the sodium and potassium emission lines. A lithium internal standard is used, and the ratios of the Na/Li and K/Li signals are read out on two separate meters. The internal standard compensates for minor fluctuations in flame temperature, aspiration rate, and so forth. A cool flame, such as air-propane, is used to minimize ionization. Typically, the serum sample and standards are diluted 1 200 with a 100 ppm Li solution and aspirated directly. The instrument can be adjusted to read directly in meq/1 for sodium and potassium by adjusting the gain while aspirating appropriate standards. [Pg.287]

A serum sample is analyzed for lithium by atomic-emission spectroscopy using the method of standard additions. Three... [Pg.293]

The human eye is a useful detector for qualitative analysis but not for quantitative analysis. Replacing the human eye with a spectrometer and photon detector such as a PMT or CCD permits more accurate identification of the elements present because the exact wavelengths emitted by the sample can be determined. In addition, the use of a photon detector permits quantitative analysis of the sample. The wavelength of the radiation indicates what element is present, and the radiation intensity indicates how much of the element is present. Flame atomic emission spectrometry is particularly useful for the determination of the elements in the first two groups of the periodic table, including sodium, potassium, lithium, calcium, magnesium, strontium, and barium. The determination of these elements is often called for in medicine, agriculture, and animal science. Remember that the term spectrometry is used for quantitative analysis by the measurement of radiation intensity. [Pg.451]

The majority of commercial atomic absorption spectrometers permit both flame atomic absorption and flame atomic emission measurements to be performed. Thus, flame AES is no longer considered as an independent instrumental technique, except for the determination of sodium and potassium (as well as calcium or lithium) in biological samples by flame photometers. [Pg.152]

Flame atomic emission spectrometry Basic information on FAES is presented elsewhere in this encyclopedia. Sodium measurements are performed at 590 nm with the use of a propane flame (1925°C). Physiological samples for sodium determination are highly diluted before measurement. The diluent and the calibrator solution contain the same concentration of lithium ions so as to balance flame instability by a concomitant measurement of lithium in the reference beam (the so-called lithium guideHne). At the same time, lithium ions inhibit the ionization of sodium atoms. This procedure cannot be used in the case of therapy with lithium salts. That is why some authors prefer the concomitant measurement of caesium to that of lithium. Dilution adjusts the viscosity of the sample to that of the calibrator solution to produce identical aspiration rate and drop size on nebulization. As other electrolytes interfere with sodium measurement, their concentration in the caH-brator solution must be similar to their concentration in the sample. For the measurement of sodium in urine, calibrator solutions different from those for serum measurement are needed as the electrolyte concentrations in urine samples are quite different from those in serum and their relations are very variable. As the concentration of the electrolytes in serum is rather constant, calibrator solutions for serum measurements can fulfill their function better than those for urine in other words, urine determinations are usually less accurate. FAES proved to be sufficiently reliable to be used as the basic principle of the sodium reference measurement procedure. In routine use, however, FAES is less accurate. Its application is given up by most clinical laboratories in favor of potentiometric measurements... [Pg.713]

Palanco S, Lasema J (2004) Remote sensing instrument for solid samples based on open-path atomic emission spectrranetry. Rev Sci Instrum 75 2068-2075 Prokofiev I, Gorobets B, Shuriga T et al (1979) Origin of the fluorescence of lithium minerals. Izv Akad Nauk SSSR Ser Geol 3 88-94 (in Russian)... [Pg.576]

Lithium can be measured by either atomic emission or atomic absorption flame photometry. [Pg.228]

Fig. 3. Energy level diagram for the lithium atom showing the wavelength in nm for a number of transitions. Note the transition at 671 nm is used in flame emission spectrometry. Fig. 3. Energy level diagram for the lithium atom showing the wavelength in nm for a number of transitions. Note the transition at 671 nm is used in flame emission spectrometry.
Typical biological fluids include blood and blood serum, blood plasma, urine and saliva. Measurement of calcium in serum was the first analysis to which the technique of AAS was applied and is an obvious example of how FAAS is useful for biomedical analysis. Other specimens e.g. dialysis fluids, intestinal contents, total parenteral nutrition solutions, may be analysed on rare occasions. Elements present at a sufficiently high concentration are lithium and gold when used to treat depression and rheumatoid arthritis respectively, and calcium, magnesium, iron, copper and zinc. Sodium and potassium can be determined by FAAS but are more usually measured by flame atomic emission spectroscopy or with ion selective electrodes. Other elements are present in fluids at too low a concentration to be measured by conventional FAAS with pneumatic nebulization. With other fluids, e.g. seminal plasma, cerebrospinal fluid, analysis may just be possible for a very few elements. [Pg.142]

Of the different techniques for atomic emission spectroscopy (AES) only those which use a flame or an ICP are of any interest for analysis of biomedical specimens. Flame AES, also called flame photometry, has been an essential technique within clinical laboratories for measuring the major cations, sodium and potassium. This technique, usually with an air-propane flame, was also used to determine lithium in specimens from patients who were given this element to treat depression, and was employed by virtually all clinical laboratories throughout the world until the recent development of reliable, rapid-response ion selective electrodes. Biological fluids need only to be diluted with water and in modern equipment the diluter is an integral part of the instrument so that a specimen of plasma or urine can be introduced without any preliminary treatment. [Pg.147]

Fluorinated dithiocarbamates have been used as part of a supercritical fluid extraction (761), while pyrrolidene (762, 763), and benzyl (741, 764) dithiocarbamates and poly(dithiocarbamate) chelating resin (765) have also been utilized, as has detection by XRF (764) and inductively coupled plasma atomic emission spectroscopy (765). Related to this, the determination of chromium levels in urine has been achieved using lithium bis(trifluoroethyl)dithiocarba-mate as the complexing agent with detection via an isotopic dilution GC and mass spectral method (766). [Pg.168]

The commercial ores, beryl and bertrandite, are usually decomposed by fusion using sodium carbonate. The melt is dissolved in a mixture of sulfuric and hydrofluoric acids and the solution is evaporated to strong fumes to drive off siUcon tetrafluoride, diluted, then analy2ed by atomic absorption or plasma emission spectrometry. If sodium or siUcon are also to be determined, the ore may be fused with a mixture of lithium metaborate and lithium tetraborate, and the melt dissolved in nitric and hydrofluoric acids (17). [Pg.69]

All the alkali metals have characteristic flame colorations due to the ready excitation of the outermost electron, and this is the basis of their analytical determination by flame photometry or atomic absorption spectroscopy. The colours and principal emission (or absorption) wavelengths, X, are given below but it should be noted that these lines do not all refer to the same transition for example, the Na D-line doublet at 589.0, 589.6 nm arises from the 3s — 3p transition in Na atoms formed by reduction of Na+ in the flame, whereas the red line for lithium is associated with the short-lived species LiOH. [Pg.75]

Replacing the metal Al by a boron atom as the metal chelate center, Tao et al. reported lithium tetra-(2-methyl-8-hydroxy-quinolinato) boron (LiB(qm)4, 240) (Scheme 3.73) quantitatively prepared by reaction of lithium borohydride (LiBH4) with four equivalents of 2-methyl-8-hydroxy-quinoline in ethanol at room temperature [266]. LiB(qm)4 is a pure blue emitter with a maximum peak emission at 470 nm with FWHM of 75 nm. Devices of... [Pg.364]


See other pages where Lithium, atomic emission is mentioned: [Pg.91]    [Pg.127]    [Pg.85]    [Pg.418]    [Pg.453]    [Pg.251]    [Pg.297]    [Pg.509]    [Pg.717]    [Pg.480]    [Pg.649]    [Pg.163]    [Pg.192]    [Pg.15]    [Pg.166]    [Pg.1143]    [Pg.8]    [Pg.319]    [Pg.42]    [Pg.240]    [Pg.248]    [Pg.31]    [Pg.46]    [Pg.291]    [Pg.62]   


SEARCH



Atomic emission

Lithium atom

Lithium atomic

© 2024 chempedia.info