Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Liquid elemental analysis

Gases and vapors of volatile liquids can be introduced directly into a plasma flame for elemental analysis or for isotope ratio measurements. Some elements can be examined by first converting them chemically into volatile forms, as with the formation of hydrides of arsenic and tellurium. It is important that not too much analyte pass into the flame, as the extra material introduced into the plasma can cause it to become unstable or even to go out altogether, thereby compromising accuracy or continuity of measurement. [Pg.102]

Since the 1950s XRF has been used extensively for the analysis of solids, powders, and liquids. The technique was extended to analyze thin-film materials in the 1970s. XRF can be used routinely for the simultaneous determination of elemental composition and thickness of thin films. The technique is nondesuuctive, rapid, precise, and potentially very accurate. The results are in good agreement with other elemental analysis techniques including wet chemical, electron-beam excitation techniques, etc. [Pg.338]

The natural world is one of eomplex mixtures petroleum may eontain 10 -10 eomponents, while it has been estimated that there are at least 150 000 different proteins in the human body. The separation methods necessary to cope with complexity of this kind are based on chromatography and electrophoresis, and it could be said that separation has been the science of the 20th century (1, 2). Indeed, separation science spans the century almost exactly. In the early 1900s, organic and natural product chemistry was dominated by synthesis and by structure determination by degradation, chemical reactions and elemental analysis distillation, liquid extraction, and especially crystallization were the separation methods available to organic chemists. [Pg.3]

The various spectral and physical properties of the compounds prepared, including their elemental analysis, and IR, NMR, and mass spectra (which contained the appropriate ions, each of the intensity demanded by the isotopic composition of the ion), all fully supported the formulation of the species as reported. With two exceptions, all of the new compounds were found to be colorless liquids, typically having a relatively short liquid range, and they are usually very volatile for their molecular weight. The two exceptions are (CFsliTe, which is yellow-green, and (CFsljTez, which is red-brown (21). [Pg.190]

C05-0147. Elemental analysis of an organic liquid with a fishy odor gives the following elemental mass... [Pg.349]

The compounds benzonitrile, p-methylbenzonitrile, /)-methoxybenzonitrile, p-trifluoromethyl-benzonitrile, /)-methoxycarbonylbenzonitrile, and triethoxysilane are commercial products and are degassed and stored under argon before use. Trimethylsilane was prepared according to a literature report [38]. The nitrile (9.8 mmol) and the hydrosilane (49 mmol) are added to the rhodium catalyst (0.1 mmol) contained in a Carius tube. When using trimethylsilane, the operation is performed at —20°C. The tube is closed and the mixture stirred at 100 °C for 15h. The liquid is separated by filtration and the excess of hydrosilane removed under vacuum to leave the N, Wdisilylamine derivative. If necessary, a bulb to bulb distillation is performed to obtain a completely colorless liquid. The yields obtained in the different runs are reported in Table 6. The product have been characterized by elemental analysis, NMR spectroscopy, and GC-MS analysis. [Pg.450]

More interesting was the elemental analysis of the residue. Whereas a 2 1 AcOH [DMEpy]l should have contained 33% iodine, the elemental analysis indicated the residue contained only 0.7% iodine. This clearly indicated that we no longer had an iodide salt, but more likely had an acetate salt, most likely a 2 1 mixture of AcOH [DMEpy] [OAc]. (The formation of a 2 1 salt would be typical of our experience with ionic liquids. In practice they normally tenaciously retain ca. 2 mol AcOH/mol of ionic liquid, a phenomena we noted in om earlier reports. (3) Closer comparison of the salt obtained and low levels of Mel detected in the effluent indicated that the amount of [DMEpy] [OAc] generated closely matched the total Mel (ca. 90-95% yield of Mel based on [DMEpy][OAc].) Further, the elemental analysis was unable to detect any Rh in the effluent, so we could conclude that there was no aspiration occurring. This clearly indicated that our ionic liquid loss was due to metathesis of the ionic liquid from the iodide to the acetate salt, likely due to reaction (23) which likely sublimed overhead. In principle, the miniscule amount of Mel and ionic liquid could be returned to the reactor to maintain the process. [Pg.337]

Applications ICP-MS has become the technique of choice for the determination of elements in a wide range of liquid samples at concentrations in the ng L 1 to [igL-1 range. Typical applications of ICP-MS are multi-element analysis of liquids (even with high solid contents) element speciation by hyphenation to chromatographic techniques continuous on-line gas analysis multi-element trace analysis of polymers and trace analysis in high-purity materials. ICP-MS is routinely used for quality control purposes. [Pg.658]

These new derivatives were isolated in good yields (60-94%) as high boiling liquids and were fully characterized by NMR spectroscopy (1H, 13C, and 11B) and elemental analysis. The proton NMR of the starting material 1 shows a well-resolved multiplet and quintet for the trimethylene bridge. Upon monosubstitution, however, three complex multiplets are observed, indicative of the unsymmetrical structures of these derivatives. Also, the nonequivalence of the N-C carbon atoms is clearly apparent in the 13C NMR spectra of 2-4. [Pg.387]

The proposed structure for the polymer is well supported by liquid state ll, 13C, and nB NMR data and elemental analysis. The formula, BN16C15H3 5, is consistent with the theoretical N/B ratio of 1.7. Since no chlorine is detected in the product, the terminating groups are mainly borylamino, N(CH3)B(NHCH3)2, groups. [Pg.177]

After reaction, any solid residue was filtered off and the liquid product was separated by distillation into a bottoms product and a distillate that included unreacted Tetralin and low-boiling products from both the coal and the Tetralin. As tetralin breaks down under dissolution conditions to form mainly the tetralin isomer 1-methyl indan, naphthalene and alkyl benzenes (4) it was assumed that no compound with a higher boiling point than naphthalene was formed from the solvent, and the distillation to recover solvent was therefore continued until naphthalene stopped subliming. Some residual naphthalene remained in the bottoms product its mass, as determined from nmr and elemental analysis, was subtracted from the mass of bottoms product recovered and included in the amount of distillate recovered. It was assumed that all naphthalene present came from the Tetralin, not the coal. However, as the amount of tetralin reacted was 10 times the amount of coal this assumption appears reasonable. [Pg.243]

The bioconversion process of Acid Orange 7 will be hereby analyzed. This is an incremental study with respect to that due to Lodato et al. [41], based on the operation of an airlift reactor with cells of Pseudomonas sp. 0X1 immobilized on natural pumice (density = 1,000 kg/m3 particle size = 800-1,000 pm). Details regarding the strain, medium, culture growth and main diagnostics of the liquid phase are reported by Lodato et al. [41]. Elemental analysis of dry biomass was obtained by a C/H/N 600 LECO analyzer. [Pg.120]

Non-destructive elemental analysis of solid or liquid samples for major and minor constituents. Used in routine analysis of metallurgical and mineral samples. Most suited to the determination of heavy elements in light matrices (e.g. Br or Pb in petroleum). Well suited for on-stream, routine analysis. Electron beam excitation methods valuable in surface studies in combination with electron microscopy. Detection limits generally in the range 10-100 ppm. Relative precision, 5-10%. [Pg.336]

On the basis of the preceding discussion, it should be obvious that ultratrace elemental analysis can be performed without any major problems by atomic spectroscopy. A major disadvantage with elemental analysis is that it does not provide information on element speciation. Speciation has major significance since it can define whether the element can become bioavailable. For example, complexed iron will be metabolized more readily than unbound iron and the measure of total iron in the sample will not discriminate between the available and nonavailable forms. There are many other similar examples and analytical procedures that must be developed which will enable elemental speciation to be performed. Liquid chromatographic procedures (either ion-exchange, ion-pair, liquid-solid, or liquid-liquid chromatography) are the best methods to speciate samples since they can separate solutes on the basis of a number of parameters. Chromatographic separation can be used as part of the sample preparation step and the column effluent can be monitored with atomic spectroscopy. This mode of operation combines the excellent separation characteristics with the element selectivity of atomic spectroscopy. AAS with a flame as the atom reservoir or AES with an inductively coupled plasma have been used successfully to speciate various ultratrace elements. [Pg.251]

The purity of the terminal Au-oxo complexes, 3 and 4, was established by several methods including P NMR (3 and 4 have only one phosphorus peak at —8.55 and —13.15 ppm, respectively), cyclic voltammetry, electronic absorption spectroscopy, vibrational spectroscopy, detailed magnetic measurements and elemental analysis on all elements (triplicate analyses for Au) (44). The single peak in the PNMR spectra is consistent with the C2V symmetry of 3 and 4 established by multiple X-ray crystallographic structure determinations and a neutron diffraction study on 3 at liquid He... [Pg.256]

Synthetic hydroxyapatite prepared by mixing stoichiometric amounts of aqueous solutions of calcium nitrate and ammonium phosphate was used in this study. The pH of the boiling suspension was maintained at about 10 by flowing a mixture of NH and throughout the precipitation process. The precipitate was repeatedly washed until the conductivity of the supernatant liquid was observed to be constant. The washed sample was freeze-dried and analyzed. An elemental analysis of the batch preparation showed the Ca/P molar to be ratio 1.64, with the predominant impurity being 2... [Pg.314]

Ionic liquids are a class of solvents and they are the subject of keen research interest in chemistry (Freemantle, 1998). Hydrophobic ionic liquids with low melting points (from -30°C to ambient temperature) have been synthesized and investigated, based on 1,3-dialkyl imidazolium cations and hydrophobic anions. Other imidazolium molten salts with hydrophilic anions and thus water-soluble are also of interest. NMR and elemental analysis have characterized the molten salts. Their density, melting point, viscosity, conductivity, refractive index, electrochemical window, thermal stability, and miscibility with water and organic solvents were determined. The influence of the alkyl substituents in 1,2, 3, and 4(5)-positions on the imidazolium cation on these properties has been scrutinized. Viscosities as low as 35 cP (for l-ethyl-3-methylimi-dazolium bis((trifluoromethyl)sulfonyl)amide (bis(triflyl)amide) and trifluoroacetate) and conductivities as high as 9.6 mS/cm were obtained. Photophysical probe studies were carried out to establish more precisely the solvent properties of l-ethyl-3-methyl-imidazolium bis((trifluoromethyl)sulfonyl)amide. The hydrophobic molten salts are promising solvents for electrochemical, photovoltaic, and synthetic applications (Bon-hote et al., 1996). [Pg.87]


See other pages where Liquid elemental analysis is mentioned: [Pg.118]    [Pg.563]    [Pg.634]    [Pg.642]    [Pg.139]    [Pg.160]    [Pg.372]    [Pg.450]    [Pg.952]    [Pg.17]    [Pg.282]    [Pg.270]    [Pg.271]    [Pg.479]    [Pg.23]    [Pg.21]    [Pg.271]    [Pg.272]    [Pg.36]    [Pg.244]    [Pg.95]    [Pg.246]    [Pg.706]    [Pg.179]    [Pg.197]    [Pg.29]    [Pg.145]    [Pg.195]    [Pg.272]    [Pg.507]   
See also in sourсe #XX -- [ Pg.78 , Pg.79 ]

See also in sourсe #XX -- [ Pg.78 , Pg.79 ]




SEARCH



High-performance liquid chromatography HPLC), elemental analysis

Liquid analysis

© 2024 chempedia.info