Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Element heavy

As mentioned above, some chemistry of a few heavier elements is also of concern in the development of the geosphere and of living systems as we shall see later. A striking case is the chemistry of molybdenum (Mo) and tungsten (W), which we take here with vanadium (V). The first two elements are in the second and third series of transition metals and all three are found in higher combining ratios and with a greater preference for S rather than O, W less so than Mo (the [Pg.50]


All elements of atomic number greater than 83 exhibit radioactive decay K, Rb, Ir and a few other light elements emit p particles. The heavy elements decay through various isotopes until a stable nucleus is reached. Known half-lives range from seconds to 10 years. [Pg.339]

X-ray fluorescence A method of analysis used to identify and measure heavy elements in the presence of each other in any matrix. The sample is irradiated with a beam of primary X-rays of greater energy than the characteristic X-radiation of the elements in the sample. This results in the excitation of the heavy elements present and the emission of characteristic X-ray energies, which can be separated into individual wavelengths and measured. The technique is not suitable for use with elements of lower atomic number than calcium. [Pg.429]

The detectable limits for a dispersion apparatus are a few g-g/g, and vary according to the environment around from a few pg/g for heavy elements in light matrices to a few mg/g for light elements. [Pg.34]

Gr. technetos, artificial) Element 43 was predicted on the basis of the periodic table, and was erroneously reported as having been discovered in 1925, at which time it was named masurium. The element was actually discovered by Perrier and Segre in Italy in 1937. It was found in a sample of molybdenum, which was bombarded by deuterons in the Berkeley cyclotron, and which E. Eawrence sent to these investigators. Technetium was the first element to be produced artificially. Since its discovery, searches for the element in terrestrial material have been made. Finally in 1962, technetium-99 was isolated and identified in African pitchblende (a uranium rich ore) in extremely minute quantities as a spontaneous fission product of uranium-238 by B.T. Kenna and P.K. Kuroda. If it does exist, the concentration must be very small. Technetium has been found in the spectrum of S-, M-, and N-type stars, and its presence in stellar matter is leading to new theories of the production of heavy elements in the stars. [Pg.106]

Some of the basis sets discussed here are used more often than others. The STO—3G set is the most widely used minimal basis set. The Pople sets, particularly, 3—21G, 6—31G, and 6—311G, with the extra functions described previously are widely used for quantitative results, particularly for organic molecules. The correlation consistent sets have been most widely used in recent years for high-accuracy calculations. The CBS and G2 methods are becoming popular for very-high-accuracy results. The Wachters and Hay sets are popular for transition metals. The core potential sets, particularly Hay-Wadt, LANL2DZ, Dolg, and SBKJC, are used for heavy elements, Rb and heavier. [Pg.89]

The methods listed thus far can be used for the reliable prediction of NMR chemical shifts for small organic compounds in the gas phase, which are often reasonably close to the liquid-phase results. Heavy elements, such as transition metals and lanthanides, present a much more dilficult problem. Mass defect and spin-coupling terms have been found to be significant for the description of the NMR shielding tensors for these elements. Since NMR is a nuclear effect, core potentials should not be used. [Pg.253]

The Schrodinger equation is a nonreiativistic description of atoms and molecules. Strictly speaking, relativistic effects must be included in order to obtain completely accurate results for any ah initio calculation. In practice, relativistic effects are negligible for many systems, particularly those with light elements. It is necessary to include relativistic effects to correctly describe the behavior of very heavy elements. With increases in computer capability and algorithm efficiency, it will become easier to perform heavy atom calculations and thus an understanding of relativistic corrections is necessary. [Pg.261]

This chapter provides only a brief discussion of relativistic calculations. Currently, there is a small body of references on these calculations in the computational chemistry literature, with relativistic core potentials comprising the largest percentage of that work. However, the topic is important both because it is essential for very heavy elements and such calculations can be expected to become more prevalent if the trend of increasing accuracy continues. [Pg.261]

Relativistic density functional theory can be used for all electron calculations. Relativistic DFT can be formulated using the Pauli formula or the zero-order regular approximation (ZORA). ZORA calculations include only the zero-order term in a power series expansion of the Dirac equation. ZORA is generally regarded as the superior method. The Pauli method is known to be unreliable for very heavy elements, such as actinides. [Pg.263]

Fig. 1. Nuclear reactions for the production of heavy elements by intensive slow neutron irradiation. The main line of buildup is designated by heavy... Fig. 1. Nuclear reactions for the production of heavy elements by intensive slow neutron irradiation. The main line of buildup is designated by heavy...
It is possible to prepare very heavy elements in thermonuclear explosions, owing to the very intense, although brief (order of a microsecond), neutron flux furnished by the explosion (3,13). Einsteinium and fermium were first produced in this way they were discovered in the fallout materials from the first thermonuclear explosion (the "Mike" shot) staged in the Pacific in November 1952. It is possible that elements having atomic numbers greater than 100 would have been found had the debris been examined very soon after the explosion. The preparative process involved is multiple neutron capture in the uranium in the device, which is followed by a sequence of beta decays. Eor example, the synthesis of EM in the Mike explosion was via the production of from followed by a long chain of short-Hved beta decays,... [Pg.215]

W. MbUer and R. Lindner, eds.. Transplutonium 1975, 4th International Transplutonium Element Symposium, Proceedings of the Symposium at Baden Baden September 13—17, 1975 W. MbUer and H. Blank, eds.. Heavy Element Properties, 4th International Transplutonium Element Symposium, 5th International Conference on Plutonium and Other Hctinides 1975, Proceedings of the Joint Session of the Baden Baden Meetings September 13, 1975, North-HoUand Publishing Co., Amsterdam, American Elsevier Publishing Co., Inc., New York. [Pg.228]

The nuclear reactor is a device in which a controlled chain reaction takes place involving neutrons and a heavy element such as uranium. Neutrons are typically absorbed in uranium-235 [15117-96-17, or plutonium-239 [15117 8-5], Pu, nuclei. These nuclei spHt, releasing two fission fragment nuclei... [Pg.179]

E. K. Hyde, I. Perlman, and G. T. Seaborg, The Nuclear Properties of the Heavy Elements, Prentice-Hall, Englewood Cliffs, N.J., 1964 E. Browne, R. B. Firestone, and V. S. Shirley, eds.. Table of Radioactive Isotopes,John Wiley Sons, Inc., New York, 1986. [Pg.205]

AT the path length, and P (A) the mass absorption coefficient at wavelength A. Between absorption edges, P (A) is proportional to Z A and is nearly independent of physical or chemical state. An absorption measurement on each side of an absorption edge is required for each element analyzed. X-ray absorption is especially useful in determining heavy elements in mixed materials of lower Z, such as lead in gasoline and uranium in aqueous solution. [Pg.320]

Production in Fission of Heavy Elements. Tritium is produced as a minor product of nuclear fission (47). The yield of tritium is one to two atoms in 10,000 fissions of natural uranium, enriched uranium, or a mixture of transuranium nucHdes (see Actinides and transactinides Uranium). [Pg.15]

Elemental sensitivity Scales as the square of nuclear charge best for heavy elements (< 10 monolayer) poor for hydrogen... [Pg.38]

Considering that heavy elements have more levels than just K and L, Eq. (2.2) also indicates that the heavier the element, the more numerous are the possible Auger transitions. Fortunately, there are large differences between the probabilities of different Auger transitions, so that even for the heaviest elements, only a few intense transitions occur, and analysis is still possible. [Pg.33]

Lead (13 ppm) is by far the most abundant of the heavy elements, being approached amongst these only by thallium (8.1 ppm) and uranium (2.3 ppm). This abundance is related to the fact that 3 of the 4 naturally occurring isotopes of lead (206, 207 and 208) arise primarily as the stable end products of the natural radioactive series. Only (1.4%)... [Pg.368]

We conclude that more work is need<. In particular it would be useful to repeat the TB-LMTO-CPA calculations using also other methods for description of charge transfer effects, e.g., the so-called correlated CPA, or the screened-impurity modeP. One may also cisk if a full treatment of relativistic effects is necessary. The answer is positive , at least for some alloys (Ni-Pt) that contain heavy elements. [Pg.43]

Seaborg, G. T. (1945). The Chemical and Radioactive Properties of the Heavy Elements. Chemical Engineering News 23 2190-2193. [Pg.871]

At the same time it is recognized that the pairs of substances which, on mixing, are most likely to obey Raoult s law are those whose particles are most nearly alike and therefore interchangeable. Obviously no species of particles is likely to fulfill this condition better than the isotopes of an element. Among the isotopes of any element the only difference between the various particles is, of course, a nuclear difference among the isotopes of a heavy element the mass difference is trivial and the various species of particles are interchangeable. Whether the element is in its liquid or solid form, the isotopes of a heavy element form an ideal solution. Before discussing this problem we shall first consider the solution of a solid solute in a liquid solvent. [Pg.81]


See other pages where Element heavy is mentioned: [Pg.340]    [Pg.913]    [Pg.445]    [Pg.174]    [Pg.175]    [Pg.46]    [Pg.227]    [Pg.417]    [Pg.334]    [Pg.356]    [Pg.234]    [Pg.375]    [Pg.2]    [Pg.196]    [Pg.196]    [Pg.365]    [Pg.474]    [Pg.476]    [Pg.478]    [Pg.479]    [Pg.483]    [Pg.508]    [Pg.547]    [Pg.561]    [Pg.647]    [Pg.3]    [Pg.13]    [Pg.1266]    [Pg.156]   
See also in sourсe #XX -- [ Pg.183 ]

See also in sourсe #XX -- [ Pg.32 ]

See also in sourсe #XX -- [ Pg.182 , Pg.225 ]

See also in sourсe #XX -- [ Pg.100 ]

See also in sourсe #XX -- [ Pg.283 ]

See also in sourсe #XX -- [ Pg.127 ]

See also in sourсe #XX -- [ Pg.223 ]

See also in sourсe #XX -- [ Pg.36 ]

See also in sourсe #XX -- [ Pg.112 ]




SEARCH



Applications Heavy Elements

Chemical identification, heavy elements

Decay modes heavy elements

Electron configurations heavy elements

FORMATION OF THE HEAVY ELEMENTS

Gas-Phase Ion Chemistry of Heavy Elements

Glass heavy element analysis

Group 15 elements heavy clusters

Heavy Atom Group Elements

Heavy element analysis

Heavy element impurities in solids AIMPs as embedding Potentials

Heavy element species, determination

Heavy element topology

Heavy elements formation

Heavy elements production

Heavy elements water reactors

Heavy elements, chemical properties predicted

Heavy elements, relativistic effects

Heavy metals elements

Heavy rare earth elements

Heavy rare earth elements, depletion

Heavy-Element Collisions

Heavy-element nucleosynthesis

Isotope effects with heavy elements

Metals heavy element analysis

Phanes Bridged by Group 14 Heavy Elements

Production methods heavy elements

Production of the Elements by Heavy Ion Accelerators

Spin-Orbit Effects on Heavy Elements

Uranium fuels, heavy element separation

© 2024 chempedia.info