Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lead metal mercury

Coalition ofJSlortheast Governors. The CONEG model heavy-metal guideline is implemented through state regulations and limits total metal content of lead, chromium, mercury, and cadmium. The limitation of 100 parts per million total is aimed at protecting the environment from the disposal of post-consumer waste. [Pg.254]

Rubidium metal alloys with the other alkaU metals, the alkaline-earth metals, antimony, bismuth, gold, and mercury. Rubidium forms double haUde salts with antimony, bismuth, cadmium, cobalt, copper, iron, lead, manganese, mercury, nickel, thorium, and 2iac. These complexes are generally water iasoluble and not hygroscopic. The soluble mbidium compounds are acetate, bromide, carbonate, chloride, chromate, fluoride, formate, hydroxide, iodide. [Pg.278]

Deposits. Selenium forms natural compounds with 16 other elements. It is a main constituent of 39 mineral species and a minor component of 37 others, chiefly sulfides. The minerals are finely disseminated and do not form a selenium ore. Because there are no deposits that can be worked for selenium recovery alone, there are no mine reserves. Nevertheless, the 1995 world reserves, chiefly in nonferrous metals sulfide deposits, are ca 70,000 metric tons and total resources are ca 130,000 t (24). The principal resources of the world are in the base metal sulfide deposits that are mined primarily for copper, zinc, nickel, and silver, and to a lesser extent, lead and mercury, where selenium recovery is secondary. [Pg.327]

In conventional treating systems using cold-gas cleanup, the small fraction of metals released to the gas phase is captured effectively in the gas cooling and gas treating steps. The combination of gas cooling and multistage gas—Hquid contacting reduces very substantially the potential for airborne emissions of volatile metals such as lead, beryUium, mercury, or arsenic. [Pg.275]

HEAVY METALS A gi oup of metals which are sometimes toxic and can be dangerous in high concentrations. The main heavy metals covered by legislation are cadmium, lead, and mercury. Industrial activities such as smelting, rubbish burning, waste disposal and adding lead to petrol increase the amount of toxic heavy metals in the environment. [Pg.14]

Chemical Reactivity - Reactivity with Water Dissolves to form an alkaline solution. The reaction is non-violent Reactivity with Common Materials Forms explosion-sensitive materials with some metals such as lead, silver, mercury, and copper Stability During Transport Stable but must not be in contact with acids Neutralizing Agents for Acids and Caustics Not pertinent Polymerization Not pertinent Inhibitor of Polymerization Not pertinent. [Pg.348]

There are concerns that land application of sludge will result in an increase of pathogenic bacteria, viruses, parasites, chemicals and metals in drinking water reservoirs, aquifers, and the food chain. This raises additional concerns of cumulative effects of metals in cropped soils. Research shows that if metals such as zinc, copper, lead, nickel, mercury, and cadmium are allowed to build up in soils due to many applications of sludges over the years, they could be released at... [Pg.573]

EDTA also is used to treat lead and mercury poisoning, as it can lock up those metals so they can do no harm in the body. [Pg.50]

Precipitation reactions have many applications. One is to make compounds. The strategy is to choose starting solutions that form a precipitate of the desired insoluble compound when they are mixed. Then we can separate the insoluble compound from the reaction mixture by filtration. Another application is in chemical analysis. In qualitative analysis—the determination of the substances present in a sample—the formation of a precipitate is used to confirm the identity of certain ions. In quantitative analysis, the aim is to determine the amount of each substance or element present. In particular, in gravimetric analysis, the amount of substance present is determined by measurements of mass. In this application, an insoluble compound is precipitated, the precipitate is filtered off and weighed, and from its mass the amount of a substance in one of the original solutions is calculated (Fig. 1.6). Gravimetric analysis can be used in environmental monitoring to find out how much of a heavy metal ion, such as lead or mercury, is in a sample of water. [Pg.93]

Sometimes we have to precipitate one ion of a sparingly soluble salt. For example, heavy metal ions such as lead and mercury can be removed from municipal waste-water by precipitating them as the hydroxides. However, because the ions are in dynamic equilibrium with the solid salt, some heavy metal ions remain in solution. How can we remove more of the ions ... [Pg.588]

Lead azide, Pb(N,)2, is used as a detonator, i i) What volume of nitrogen at STP (1 atm, 0°Ci does 1.5, of It id azide produce when it decomposes into lead metal and nitrogen gas (b) Would 1.5 g of mercury(ll) azide, Hg(N which is also used as a detonator, produce a larger or smallei volume, given that its decomposition products i c elemental mercury and nitrogen gas (c) Metal azides in general are potent explosives. Why ... [Pg.771]

Many years ago, geochemists recognized that whereas some metallic elements are found as sulfides in the Earth s crust, others are usually encountered as oxides, chlorides, or carbonates. Copper, lead, and mercury are most often found as sulfide ores Na and K are found as their chloride salts Mg and Ca exist as carbonates and Al, Ti, and Fe are all found as oxides. Today chemists understand the causes of this differentiation among metal compounds. The underlying principle is how tightly an atom binds its valence electrons. The strength with which an atom holds its valence electrons also determines the ability of that atom to act as a Lewis base, so we can use the Lewis acid-base model to describe many affinities that exist among elements. This notion not only explains the natural distribution of minerals, but also can be used to predict patterns of chemical reactivity. [Pg.1505]

Experience shows that in the deposition of a number of metals (mercury, silver, lead, cadmium, and others), the rate of the initial reaction is high, and the associated polarization is low (not over 20 mV). For other metals (particularly of the iron group), high values of polarization are found. The strong inhibition of cathodic metal deposition that is found in the presence of a number of organic substances (and which was described in Section 14.3) is also observed at mercury electrodes (i.e., it can be also associated with the initial step of the process). [Pg.258]

As mentioned above, approximately 7% of the total sulfur present in lead ore is emitted as S02. The remainder is captured by the blast furnace slag. The blast furnace slag is composed primarily of iron and silicon oxides, as well as aluminum and calcium oxides. Other metals may also be present in smaller amounts, including antimony, arsenic, beryllium, cadmium, chromium, cobalt, copper, lead, manganese, mercury, molybdenum, silver, and zinc. This blast furnace slag is either recycled back into the process or disposed of in piles on site. About 50 to 60% of the recovery furnace output is slag and residual lead, which are both returned to the blast furnace. The remainder of this dross furnace output is sold to copper smelters for recovery of the copper and other precious metals. [Pg.90]

Heavy metals with no known biological function, such as aluminum, arsenic, lead, and mercury, are nonessential metals.4-5 These metals are toxic because they can irreversibly bind to enzymes that require metal cofactors. Toxic metals readily bind to sulfhydryl groups of proteins.6-7 In fact,... [Pg.409]

Hazardous waste burning incinerators, cement kilns, and LWAKs do not follow a tiered approach to regulate the release of toxic metals into the atmosphere. The MACT rule finalized numerical emission standards for three categories of metals mercury, low-volatile metals (arsenic, beryllium, and chromium), and semivolatile metals (lead and cadmium). Units must meet emission standards for the amount of metals emitted. For example, a new cement kiln must meet an emission limit of 120pg/m3 of mercury, 54pg/m3 of low-volatile metals, and 180 pg/m3 of semivolatile metals. [Pg.463]

Chemical reduction is used to transform a toxic substance with a higher valence to a nontoxic or less-toxic substance with lower valence. The most promising application is the reduction of hexava-lent chromium to trivalent chromium. This method is also applicable to other multivalent metals such as lead and mercury. Commonly used chemical agents for this purpose are sulfite salts, sulfur dioxide, and base metals (e.g., iron and aluminum).22 24... [Pg.625]

Environmental hazards of batteries can be briefly summarized as follows. A battery is an electrochemical device with the ability to convert chemical energy to electrical energy to provide power to electronic devices. Batteries may contain lead, cadmium, mercury, copper, zinc, lead, manganese, nickel, and lithium, which can be hazardous when incorrectly disposed. Batteries may produce the following potential problems or hazards (a) they pollute the lakes and streams as the metals... [Pg.1225]

Drasch G, Wanghofer E, Roider G. 1997. Are blood, urine, hair, and muscle valid biomonitors for the internal burden of men with the heavy metals mercury, lead and cadmium Trace Elements and Electrolytes 14(3) 116-123. [Pg.510]

In developed countries, e-waste is collected to recover some materials of value and to be safely rid of the lead, cadmium, mercury, dioxins, furans, and such toxic materials as they contain. In developing countries, e-waste is collected principally to recover a few metals of value. [Pg.276]

Lead(IV) oxide Non-metals Mercury(I) oxide Non-metals Mercury(II) oxide Non-metals Silver(I) oxide Non-metals... [Pg.1900]

Heavy metals Lead Arsenic Mercury Iron... [Pg.25]

In addition to the chemicals included on the other lists, the CDC also included heavy metals such as arsenic, lead, and mercury volatile solvents such as benzene, chloroform, and bromoform decomposition products such as dioxins and furans polychlorinated biphenyls (PCBs) flammable industrial gases and liquids such as gasoline and propane explosives and oxidizers and all persistent and nonpersistent pesticides. Agents included in this volume are limited to those that are most likely to pose an acute toxicity hazard. [Pg.285]

Schell, W. R., and Barnes, R. S., Lead and Mercury in the aquatic environment of Western Washington State, In Aqueous Environmental Chemistry of Metals, A. J. Rubin, ed., Ann Arbor Science, Ann Arbor, Michigan, 129-165 (1974). [Pg.360]

In the environment, metals are common as a chemical species, and as usual the metal-organic species are more toxic. For example, the inorganic lead and mercury species are less toxic for living organisms than the organic ones (methyl mercury, tetraethyl lead). However inorganic arsenic compounds are more toxic than organic... [Pg.217]

Cadmium occurs naturally as sulfide co-deposited with zinc, copper, and lead sulfides. It is produced as a by-product in above-mentioned metal processing. Similar to lead and mercury, this heavy metal has no known biological functions in living organisms, and accordingly its accumulation in food and water leads to undesirable consequences to biota. Cadmium toxicology is related to dangerous influence to CNS and excretion systems, firstly, on kidney. [Pg.223]


See other pages where Lead metal mercury is mentioned: [Pg.180]    [Pg.132]    [Pg.17]    [Pg.168]    [Pg.29]    [Pg.34]    [Pg.35]    [Pg.571]    [Pg.248]    [Pg.571]    [Pg.358]    [Pg.934]    [Pg.1320]    [Pg.1257]    [Pg.19]    [Pg.129]    [Pg.3]    [Pg.688]    [Pg.63]    [Pg.349]    [Pg.227]    [Pg.511]    [Pg.198]   
See also in sourсe #XX -- [ Pg.5 , Pg.6 , Pg.7 ]

See also in sourсe #XX -- [ Pg.5 , Pg.6 , Pg.7 , Pg.11 ]




SEARCH



Heavy metals cadmium, lead, mercury and

Lead metal

Mercury metals

Metallic lead

Metallic mercury

© 2024 chempedia.info