Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Salts sulfites

After sulfuric acid work-up (accompanied by the formation of sodium sulfate), the resorcinol is extracted and isolated in a 94% yield based on y -benzenedisulfonic acid [98-48-6]. In addition to the technical complexity that goes along with the manipulation of soHds at high temperature, this process produces large amounts of salts (sulfite and sulfate salts) which economically as well as environmentally are not always desired. [Pg.487]

Water is an excellent solvent for atmospheric contaminants, such as salts, sulfites, and sulphates. Airborne contaminants would probably never harm coated metals, if not for the fact that they so easily become Cl or S04 ions in water. The water and ions, of course, fuel corrosion beneath the coating. [Pg.104]

Galena, see Eead sulfite Glauber s salt, see Sodium sulfate 10-water Goethite, see Iron(II) hydroxide oxide Goslarite, see Zinc sulfate 7-water Graham s salt, see Sodium phosphate(l —) Graphite, see Carbon... [Pg.273]

Removal of brine contaminants accounts for a significant portion of overall chlor—alkali production cost, especially for the membrane process. Moreover, part or all of the depleted brine from mercury and membrane cells must first be dechlorinated to recover the dissolved chlorine and to prevent corrosion during further processing. In a typical membrane plant, HCl is added to Hberate chlorine, then a vacuum is appHed to recover it. A reducing agent such as sodium sulfite is added to remove the final traces because chlorine would adversely react with the ion-exchange resins used later in the process. Dechlorinated brine is then resaturated with soHd salt for further use. [Pg.502]

Another group of compounds called oxygen scavengers retard oxidation by reducing the available molecular oxygen. Products in this group are water soluble and include erythorbic acid [89-65-6] C HgO, and its salt sodium erythorbate [6381-77-7] C HgO Na, ascorbyl pahnitate [137-66-6] 22 38 7 ascorbic acid [50-81-7] C HgO, glucose oxidase [9001-37-0] and sulfites (23). [Pg.437]

Alkali Fusion of /u-Benzenedisulfonic Acid. Even though this process like the previous one is a very ancient one, it is still the main route for the synthesis of resorcinol. It has been described in detail previously and does not seem to have drastically evolved since 1980. It involves the reaction of benzene with sulfuric acid to form y -benzenedisulfonic acid which is then converted to its disulfonate sodium salt by treatment with sodium sulfite. In a second step, this salt is heated to 350°C in the presence of sodium hydroxide yielding the sodium resorcinate and sodium sulfite. [Pg.487]

The most important manganese(V) compound is K MnO, a key intermediate in the manufacture of potassium permanganate. Potassium manganate(V) is an easily crystallized salt obtained by reduction of potassium permanganate using sodium sulfite in strong sodium hydroxide solution. This was the first compound to be recognized as exclusively pentavalent. [Pg.514]

In the manufacture of 2-naphthalenol, 2-naphthalenesulfonic acid must be converted to its sodium salt this can be done by adding sodium chloride to the acid, and by neutralizing with aqueous sodium hydroxide or neutralizing with the sodium sulfite by-product obtained in the caustic fusion of the sulfonate. The cmde sulfonation product, without isolation or purification of 2-naphthalenesulfonic acid, is used to make 1,6-, 2,6-, and 2,7-naphthalenedisulfonic acids and 1,3,6-naphthalenetrisulfonic acid by further sulfonation. By nitration, 5- and 8-nitro-2-naphthalenesulfonic acids, [89-69-1] and [117-41-9] respectively, are obtained, which are intermediates for Cleve s acid. All are dye intermediates. The cmde sulfonation product can be condensed with formaldehyde or alcohols or olefins to make valuable wetting, dispersing, and tanning agents. [Pg.491]

Primary nitroparaffins react with two moles of formaldehyde and two moles of amines to yield 2-nitro-l,3-propanediamines. With excess formaldehyde, Mannich bases from primary nitroparaffins and primary amines can react further to give nitro-substituted cycHc derivatives, such as tetrahydro-l,3-oxa2iaes or hexahydropyrimidines (38,39). Pyrolysis of salts of Mannich bases, particularly of the boron trifluoride complex (40), yields nitro olefins by loss of the amine moiety. Closely related to the Mannich reaction is the formation of sodium 2-nitrobutane-1-sulfonate [76794-27-9] by warming 1-nitropropane with formaldehyde and sodium sulfite (41). [Pg.100]

The names adopted for salts consisted of a generic part derived from the acid and a specific part from the metallic base r oxide de plomb + I acide sulfurique le sulfate de plomb. The names for salts of acids containing an element in different degrees of oxidation were given different terminations sufte de soude and sulfate de soude for sodium sulfite and sulfate, and nitrite de baryte and nitrate de baryte for barium nitrite and nitrate. [Pg.115]

Ammonia Hquor is fed to the top of the stiH and heated using steam vapor which dissociates the unstable ammonium salts, eg, ammonium carbonate and ammonium sulfite. [Pg.359]

The sodium sulfite precipitates first and is removed by centrifugation, washed with water, and dried. The mother Hquor containing ammonium chloride is sent to crystallising tanks and the salt thus formed is washed and dried, giving a product said to analyse weU over 99%. [Pg.364]

Benzenedisulfonic acid [831-59-4] (disodium salt), produced by the neutralization of the disulfonic acid with sodium sulfite [7757-83-7] is used in the manufacture of resorcinol [108-46-3] (1,3-benzenediol) (2), a chemical component found in mbber products and wood adhesives (72). The disodium salt is fused with sodium hydroxide, dissolved in water, and acidified to produce resorcinol, which is isolated via extraction (73). [Pg.100]

Paper Products. Paper (qv) products account for about 2% of sulfur demand. The largest single segment of demand is in the manufacture of wood pulp by the sulfite process (see Pulp). In this process, the main sulfur intermediate is sulfur dioxide, which is generally produced at the plant site by burning elemental sulfur. Some sulfur dioxide, however, is produced as a by-product at smelter operations, purified andUquefied, and shipped to the pulp mills. The sulfur dioxide is converted to sulfurous acid, and the salt of this acid is a principal component of the cooking Hquor for the sulfite process. [Pg.125]

Physical Properties. Anhydrous sodium sulfite [7757-83-7] Na2S02, is an odorless, crystalline soHd and most commercial grades other than by-product materials are colorless or off-white (331—334). It melts only with decomposition. The specific gravity of the pure soHd is 2.633 (15.4°C). Sodium sulfite is quite soluble in water. It has a maximum solubiHty of 28 g/100 g sol at 33.4°C at higher and lower temperatures, it is less soluble in water. Below this temperature, the heptahydrate crystallizes above this temperature, the anhydrous salt crystallizes. Sodium sulfite is soluble in glycerol but insoluble in alcohol, acetone, and most other organic solvents. [Pg.148]

In removing excess free chlorine from municipal or industrial water and from wastewater, sodium sulfite competes with bisulfite or sulfur dioxide. Other commercial appHcations of sodium sulfite in wastewater treatment include the reduction of hexavalent chromium to the less toxic Cr " salts as well as the precipitation of silver and mercury. [Pg.149]

Physical Properties. Sodium metabisulfite (sodium pyrosulfite, sodium bisulfite (a misnomer)), Na2S20, is a white granular or powdered salt (specific gravity 1.48) and is storable when kept dry and protected from air. In the presence of traces of water it develops an odor of sulfur dioxide and in moist air it decomposes with loss of part of its SO2 content and by oxidation to sodium sulfate. Dry sodium metabisulfite is more stable to oxidation than dry sodium sulfite. At low temperatures, sodium metabisulfite forms hydrates with 6 and 7 moles of water. The solubiHty of sodium metabisulfite in water is 39.5 wt % at 20°C, 41.6 wt % at 40°C, and 44.6 wt % at 60°C (340). Sodium metabisulfite is fairly soluble in glycerol and slightly soluble in alcohol. [Pg.149]

Dithionite is a stronger reducing agent than sulfite. Many metal ions, eg, Cu", Ag", Pb ", Sb ", and Bi ", are reduced to the metal, whereas TiO " is reduced to (346). Dithionite readily reduces iodine, peroxides, ferric salts, and oxygen. Some of the decolorizing appHcations of dithionite, eg, in clay bleaching, are based on the reduction of ferric iron. [Pg.150]

Addition of sodium dithionite to formaldehyde yields the sodium salt of hydroxymethanesulfinic acid [79-25-4] H0CH2S02Na, which retains the useful reducing character of the sodium dithionite although somewhat attenuated in reactivity. The most important organic chemistry of sodium dithionite involves its use in reducing dyes, eg, anthraquinone vat dyes, sulfur dyes, and indigo, to their soluble leuco forms (see Dyes, anthraquinone). Dithionite can reduce various chromophores that are not reduced by sulfite. Dithionite can be used for the reduction of aldehydes and ketones to alcohols (348). Quantitative studies have been made of the reduction potential of dithionite as a function of pH and the concentration of other salts (349,350). [Pg.150]

The sulfites have some laboratory use, but are not commercially important and are less known. Monoesters of sulfurous acid are quite unstable, although salts have been identified. The diesters of sulfurous acid are mostly Hquids with boiling points somewhat less than those of the corresponding sulfates. [Pg.198]

In alkylation, phenols and amines are alkylated by sulfites in high yield and quaternary salts readily form (67). Ethylene sulfite reacts yielding hydroxyethyl derivatives and SO2 elimination, corresponding to its activity as an ethylene oxide precursor (68). [Pg.200]

Reaction of carboxylate ion with nitrophenyl sulfites gives the carboxylate -nitrophenyl esters. If the -nitrophenyl sulfite is unsymmethcal (02NCgH40S(0)0R, where R is ethyl or phenyl), carboxylate attacks the -nitrophenyl side (69). Some amino acids react with methyl and benzyl sulfites in the presence of -toluenesulfonic acid to give methyl and benzyl esters of the amino acids as -toluenesulfonate salts (70). With alcohols, the conversion of henzil to a monoacetal upon addition of sulfuric acid to the henzil in methanol and dimethyl sulfite proceeds in high yield (71). [Pg.200]

Absorption Processes. Most flue gas desulfurization (FGD) systems are based on absorption of the sulfur dioxide into a n on regen erabi e alkali-salt solvent. Sulfur absorbed using n on regen erabi e solvents is not recovered and the alkali sulfite—sulfate produced presents a disposal problem. [Pg.215]

The anhydrous monoclinic crystalline form has a density of 1.679 g/cm (59) no hydrates are known. SolubiUty in water is given in Table 4. Ammonium thiosulfate solutions decompose slowly below 50°C and more rapidly at higher temperatures. The anhydrous salt decomposes above 100°C to sulfite and sulfur (60) ... [Pg.30]

Chloride. Chloride is common in freshwater because almost all chloride salts are very soluble in water. Its concentration is generally lO " to 10 M. Chloride can be titrated with mercuric nitrate. Diphenylcarbazone, which forms a purple complex with the excess mercuric ions at pH 2.3—2.8, is used as the indicator. The pH should be controlled to 0.1 pH unit. Bromide and iodide are the principal interferences, whereas chromate, ferric, and sulfite ions interfere at levels greater than 10 mg/L. Chloride can also be deterrnined by a colorimetric method based on the displacement of thiocyanate ion from mercuric thiocyanate by chloride ion. The Hberated SCN reacts with ferric ion to form the colored complex of ferric thiocyanate. The method is suitable for chloride concentrations from 10 to 10 M. [Pg.231]


See other pages where Salts sulfites is mentioned: [Pg.44]    [Pg.116]    [Pg.244]    [Pg.97]    [Pg.1044]    [Pg.255]    [Pg.44]    [Pg.116]    [Pg.244]    [Pg.97]    [Pg.1044]    [Pg.255]    [Pg.17]    [Pg.463]    [Pg.574]    [Pg.385]    [Pg.459]    [Pg.356]    [Pg.358]    [Pg.359]    [Pg.496]    [Pg.176]    [Pg.457]    [Pg.459]    [Pg.337]    [Pg.248]    [Pg.273]    [Pg.27]    [Pg.74]    [Pg.82]    [Pg.148]    [Pg.172]   
See also in sourсe #XX -- [ Pg.1062 ]




SEARCH



Alkali metal sulfite salt

Diazonium salts reduction with sodium sulfite

Sodium sulfite: Sulfurous acid, disodium salt

Sulfite, sodium, reduction diazonium salts

© 2024 chempedia.info