Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lead dioxide production

When the positive plates for lead—acid batteries are produced using chemically obtained lead dioxide, their capacity is improperly low. In contrast, when file lead dioxide plates are produced employing electrochemical methods, they have a high capacity. What is this correlation between the electrochemical activity of battery positive plates and the method of lead dioxide production due to ... [Pg.17]

Silver reduces the oxygen evolution potential at the anode, which reduces the rate of corrosion and decreases lead contamination of the cathode. Lead—antimony—silver alloy anodes are used for the production of thin copper foil for use in electronics. Lead—silver (2 wt %), lead—silver (1 wt %)—tin (1 wt %), and lead—antimony (6 wt %)—silver (1—2 wt %) alloys ate used as anodes in cathodic protection of steel pipes and stmctures in fresh, brackish, or seawater. The lead dioxide layer is not only conductive, but also resists decomposition in chloride environments. Silver-free alloys rapidly become passivated and scale badly in seawater. Silver is also added to the positive grids of lead—acid batteries in small amounts (0.005—0.05 wt %) to reduce the rate of corrosion. [Pg.61]

The standard potential for the anodic reaction is 1.19 V, close to that of 1.228 V for water oxidation. In order to minimize the oxygen production from water oxidation, the cell is operated at a high potential that requires either platinum-coated or lead dioxide anodes. Various mechanisms have been proposed for the formation of perchlorates at the anode, including the discharge of chlorate ion to chlorate radical (87—89), the formation of active oxygen and subsequent formation of perchlorate (90), and the mass-transfer-controUed reaction of chlorate with adsorbed oxygen at the anode (91—93). Sodium dichromate is added to the electrolyte ia platinum anode cells to inhibit the reduction of perchlorates at the cathode. Sodium fluoride is used in the lead dioxide anode cells to improve current efficiency. [Pg.67]

Great differences m product structures and distnbuaons are obtained dunng oxidation with lead dioxide or tetraacetate in different solvents and media [63, 64,65J Oxidation of pentafluorophenol with lead tetraacetate gives perfluoro-2,5-cyclohexadien-l-one in good yield [6 ] (equation 57)... [Pg.341]

Lead dioxide on graphite or titanium substrates has been utilised as an anode in the production of chlorate and hypochlorites and on nickel as an anode in lead-acid primary batteries Lead dioxide on a titanium substrate has also been tested for use in the cathodic protection of heat exchangers and in seawater may be operated at current densities up to lOOOAm" . However, this anode has not gained general acceptance as a cathodic protection anode for seawater applications, since platinised Ti anodes are generally preferred. [Pg.184]

Lead oxide (PbO) (also called litharge) is formed when the lead surface is exposed to oxygen. Furthermore, it is important as a primary product in the manufacturing process of the active material for the positive and negative electrodes. It is not stable in acidic solution but it is formed as an intermediate layer between lead and lead dioxide at the surface of the corroding grid in the positive electrode. It is also observed underneath lead sulfate layers at the surface of the positive active material. [Pg.153]

Perchlorates are also produced electrochemicaUy. The oxidation of chlorate to perchlorate ions occurs at a higher positive potential (above 2.0 V vs. SHE) than chloride ion oxidation. The current yield of perchlorate is lower when chloride ions are present in the solution hence, in perchlorate production concentrated pure chlorate solutions free of chlorides are used. Materials stable in this potential range are used as the anodes primarily, these include smooth platinum, platinum on titanium, and lead dioxide. [Pg.279]

Hypercapnia (abnormally high concentration of carbon dioxide in the blood) can develop as a result of overfeeding with both dextrose and total calories.1,37 Excess carbon dioxide production and retention can lead to acute respiratory acidosis. The excess carbon dioxide also will stimulate compensatory mechanisms, resulting in an increase in respiratory rate in order to eliminate the excess carbon dioxide via the lungs. This increase in respiratory workload can cause respiratory insufficiency that may require mechanical ventilation. Reducing total calorie and dextrose intake would result in resolution of hypercapnia if due to overfeeding. [Pg.1506]

Newer secondary recovery plants use lead paste desulfurization to reduce sulfur dioxide emissions and waste sludge generation during smelting. Battery paste containing lead sulfate and lead oxide is desulfurized with soda ash to produce market-grade sodium sulfate solution. The desulfurized paste is processed in a reverberatory furnace. The lead carbonate product may then be treated in a short rotary furnace. The battery grids and posts are processed separately in a rotary smelter. [Pg.89]

Ethyl 2-(D-amiino-tetrahydroxybutyl)-5-methyl-4-furoate (5.5 g.) is mixed with 80 ml. of dry benzene and 20 ml. of glacial acetic acid, and cooled in ice plus water. While stirring and cooling, 182 g. of lead tetraacetate (purity, 99.7%)62 is added during about sixty minutes stirring is continued until all the oxidant has been consumed. The lead dioxide is then removed by filtration, and the benzene solution is extracted twice with water.58 The benzene layer is dried with calcium chloride and the solvent is evaporated under diminished pressure, giving an oily residue which rapidly crystallizes in colorless plates yield, 3.6 g. (quantitative). The product is purified by recrystallization from dilute acetic acid or by steam distillation m.p., 57°. [Pg.129]

Hock and Kropf [253] studied cumene oxidation catalyzed by Pb02. They proposed that Pb02 decomposed cumyl hydroperoxide (ROOH) into free radicals (R0 , R02 ). The free radicals started the chain oxidation of cumene in the liquid phase. Lead dioxide introduced into cumene was found to be reduced to lead oxide. The reduction product lead oxide was found to possess catalytic activity. The following tentative mechanism was proposed. [Pg.422]

V, in acetonitrile with respect to the ferrocene/ferrocinium couple. " " Peroxodisulfate oxidation of [Fe(ttcn)2] does not give the Fe + complex the major product is [Fe(ttcn)(ttcn-1-oxide)]. Oxidation by lead dioxide does however yield [Fe(ttcn)2]. " The Fe—S bond... [Pg.520]

Oxidation of methylpyridines in 60-80 % sulphuric acid at a lead dioxide anode leads to the pyridinecarboxylic acid [213]. The sulphuric acid concentration is critical and little of the product is formed in dilute sulphuric acid [214]. In these reactions, electron loss from the n-system is driven by concerted cleavage of a carbon-hydrogen bond in the methyl substituent. This leaves a pyridylmethyl radical, which is then further oxidised to the acid, fhe procedure is run on a technical scale in a divided cell to give the pyridinecarboxylic acid in 80 % yields [215]. Oxida-tionof quinoline under the same conditions leads to pyridine-2,3-dicarboxylic acid [214, 216]. 3-HaIoquino ines afford the 5-halopyridine-2,3-dicarboxylic acid [217]. Quinoxaline is converted to pyrazine-2,3-dicarboxylic acid by oxidation at a copper anode in aqueous sodium hydroxide containing potassium permanganate [218]. [Pg.228]

The oxidation of propargyl alcohol to the acid and of but-2-yne-l,4-diol to acetylene dicarboxylic acid is carried out on a technical scale at a lead dioxide anode in sulphuric acid [4, 5]. Electrochemical oxidation of acetylenic secondary alcohols to the ketone at lead dioxide in aqueous sulphuric acid [4], gives better results than the cliromic acid based process of Jones [6], Oxidation of aminoalkan-1-ols to the amino acid at a lead dioxide anode in sulphuric acid is achieved in 31 -73 % 5delds [7]. This route is applied to the technical scale production of (l-alanine from 3-aminopropanol in an undivided cell [8]. [Pg.262]

Phenyl-l,2,4-triazoline-3,5-dione has been prepared by oxidizing 4-phenylurazole with lead dioxide,7 and with ammoni-acal silver nitrate followed by an ethereal solution of iodine.8 The yields are low for both methods. 4-Substituted triazoline-diones can also be made by oxidation of the corresponding urazole with fuming nitric acid9 or dinitrogen tetroxide.10 Oxidation by <-butyl hypochlorite in acetone solution has also been described 1112 it, however, yields an unstable product, even after sublimation. Either dioxane12 or ethyl acetate are preferred as solvents for the reaction, since the product is obtained in a stable form. The latter solvent is superior since... [Pg.64]

Lead dioxide reacts with alkalies forming various types of plumbates. Fusion with caustic soda or caustic potash yields orthoplumbates and meta-plumbates, such as Na4Pb04 or Na2Pb03 (or the corresponding potassium salts). However, when dissolved in a concentrated aqueous solution of sodium or potassium hydroxide, the product is hydroxyplumbate ... [Pg.470]

When heated with lead dioxide, at 250°C, the same product, lead tetroxide is obtained ... [Pg.474]

Elemental composition Pb 46.73%, C 21.67%, H 2.73%, O 28.87%. The compound may be identified from its physical properties and elemental analyses. Additionally, a measured quantity of the compound may be hydrolyzed with water and the product, the brown lead dioxide formed may be determined by x-ray method or analyzed for lead by instrumental techniques (See Lead.)... [Pg.480]

When heated in air at 370°C, the trioxide converts to tetroxide, Pb304. It dissociates to lead monoxide on heating at 530°C. It decomposes in acids forming lead dioxide and the corresponding salts of the acids. With concentrated sulfuric acid, the products are lead dioxide and lead sulfate with evolution of... [Pg.486]

Other oxidizers, including barium chromate (BaCrO,), lead chromate (PbCrO 4), sodium nitrate (NaNO 3), lead dioxide (PbO 2), and barium peroxide (BaO 2) will also be encountered in subsequent chapters. Bear in mind that reactivity and ease of ignition are often related to the melting point of the oxidizer, and the volatility of the reaction products determines the amount of gas that will be formed from a given oxidizer /fuel combination. Table 3.2 contains the physical and chemical properties of the common oxidizers, and Table 5.8 lists the melting and boiling points of some of the common reaction products. [Pg.145]


See other pages where Lead dioxide production is mentioned: [Pg.328]    [Pg.373]    [Pg.6]    [Pg.508]    [Pg.574]    [Pg.67]    [Pg.77]    [Pg.131]    [Pg.452]    [Pg.95]    [Pg.775]    [Pg.727]    [Pg.727]    [Pg.153]    [Pg.163]    [Pg.19]    [Pg.19]    [Pg.71]    [Pg.546]    [Pg.132]    [Pg.64]    [Pg.344]    [Pg.67]    [Pg.97]    [Pg.446]    [Pg.313]    [Pg.867]    [Pg.389]    [Pg.373]    [Pg.142]   
See also in sourсe #XX -- [ Pg.34 , Pg.180 , Pg.181 , Pg.186 , Pg.187 ]




SEARCH



Lead dioxide

Lead production

Lead products

© 2024 chempedia.info