Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Technical-Scale Production

Secondary and tertiary amines are not generally prepared in the laboratory. On the technical scale methylaniline is prepared by heating a mixture of aniline hydrochloride (55 parts) and methyl alcohol (16 parts) at 120° in an autoclave. For dimethylaniline, aniline and methyl alcohol are mixed in the proportion of 80 78, 8 parts of concentrated sulphuric acid are added and the mixture heated in an autoclave at 230-235° and a pressure of 25-30 atmospheres. Ethyl- and diethyl-anihne are prepared similarly. One method of isolating pure methyl- or ethyl-aniline from the commercial product consists in converting it into the Y-nitroso derivative with nitrous acid, followed by reduction of the nitroso compound with tin and hydrochloric acid ... [Pg.562]

Several techniques have been devised which provide convenient methods of converting by-product chlorosilanes into more useful intermediates. A typical example, valuable in technical-scale work, is the redistribution of... [Pg.820]

First production of liquid oxygen on a technical scale (C. von Linde). [Pg.601]

For the production of ester sulfonates on a technical scale, Stein et al. studied the bleaching and neutralization conditions in great detail [12,33,52,53]. They had the best results when they bleached the sulfonated product with hydrogen... [Pg.469]

One of the longest known synthetically prepared surfactants are the fatty alcohol sulfates, which were prepared on technical scale before 1940. Along with their ethoxylated counterparts, the fatty alcohol ether sulfates, which appeared on the stage shortly after, their use in toiletries is very popular but they can also be found in products for textile industry and auxiliaries in emulsion polymerization. With the exception of soaps, the mentioned anionic surfactants all have a sulfur-containing functional group. Denying the differences between these, their skin irritancy potential is remarkably high. [Pg.502]

Kolbe electrolysis is a powerful method of generating radicals for synthetic applications. These radicals can combine to symmetrical dimers (chap 4), to unsymmetrical coupling products (chap 5), or can be added to double bonds (chap 6) (Eq. 1, path a). The reaction is performed in the laboratory and in the technical scale. Depending on the reaction conditions (electrode material, pH of the electrolyte, current density, additives) and structural parameters of the carboxylates, the intermediate radical can be further oxidized to a carbocation (Eq. 1, path b). The cation can rearrange, undergo fragmentation and subsequently solvolyse or eliminate to products. This path is frequently called non-Kolbe electrolysis. In this way radical and carbenium-ion derived products can be obtained from a wide variety of carboxylic acids. [Pg.92]

For Cl2 or 02 evolution the stability of ruthenium based electrodes is not sufficient on a technical scale. Therefore the possibility of stabilizing the ruthenium oxide without losing too much of its outstanding catalytic performance was investigated by many groups. For the Cl2 process, mixed oxides with valve metals like Ti or Ta were found to exhibit enhanced stability (see Section 3.1), while in the case of the 02 evolution process in solid polymer electrolyte cells for H2 production a mixed Ru/Ir oxide proved to be the best candidate [68, 80]. [Pg.105]

Technical Scale Details For This Method Hydrazide Production... [Pg.128]

Surfactants are produced on very large or medium technical scales. Their analysis by manufacturers in products and their formulations sometimes may be complicated because of the great variety of surfactants [5]. After use as directed in aqueous systems they were discharged mainly with wastewaters. Their analysis in environmental samples then becomes quite difficult because analysis must be performed at trace concentrations with limited sample amounts after essential matrix-dependent pre-concentrations steps. In addition, homologues and isomers that exist for many surfactants, besides metabolites which are generated in biochemical processes, complicate their specific determination [6]. [Pg.256]

The reduction of aromatic nitro-compounds is of exceptionally great interest, not only scientifically, hut also technically. The conversion of the hydrocarbons of coal tar into useful products began with the discovery of the nitration process the conversion, on the technical scale, of the nitro-group of nitrobenzene into the amino-group gave aniline, the starting material for the preparation of innumerable dyes and pharmaceutical products to aniline were added the homologous toluidines, xylidines, naphthylamines, and so on. [Pg.188]

Oxidation of methylpyridines in 60-80 % sulphuric acid at a lead dioxide anode leads to the pyridinecarboxylic acid [213]. The sulphuric acid concentration is critical and little of the product is formed in dilute sulphuric acid [214]. In these reactions, electron loss from the n-system is driven by concerted cleavage of a carbon-hydrogen bond in the methyl substituent. This leaves a pyridylmethyl radical, which is then further oxidised to the acid, fhe procedure is run on a technical scale in a divided cell to give the pyridinecarboxylic acid in 80 % yields [215]. Oxida-tionof quinoline under the same conditions leads to pyridine-2,3-dicarboxylic acid [214, 216]. 3-HaIoquino ines afford the 5-halopyridine-2,3-dicarboxylic acid [217]. Quinoxaline is converted to pyrazine-2,3-dicarboxylic acid by oxidation at a copper anode in aqueous sodium hydroxide containing potassium permanganate [218]. [Pg.228]

The oxidation of propargyl alcohol to the acid and of but-2-yne-l,4-diol to acetylene dicarboxylic acid is carried out on a technical scale at a lead dioxide anode in sulphuric acid [4, 5]. Electrochemical oxidation of acetylenic secondary alcohols to the ketone at lead dioxide in aqueous sulphuric acid [4], gives better results than the cliromic acid based process of Jones [6], Oxidation of aminoalkan-1-ols to the amino acid at a lead dioxide anode in sulphuric acid is achieved in 31 -73 % 5delds [7]. This route is applied to the technical scale production of (l-alanine from 3-aminopropanol in an undivided cell [8]. [Pg.262]

Very recently, Hu et al. claimed to have discovered a convenient procedure for the aerobic oxidation of primary and secondary alcohols utilizing a TEMPO based catalyst system free of any transition metal co-catalyst (21). These authors employed a mixture of TEMPO (1 mol%), sodium nitrite (4-8 mol%) and bromine (4 mol%) as an active catalyst system. The oxidation took place at temperatures between 80-100 °C and at air pressure of 4 bars. However, this process was only successful with activated alcohols. With benzyl alcohol, quantitative conversion to benzaldehyde was achieved after a 1-2 hour reaction. With non-activated aliphatic alcohols (such as 1-octanol) or cyclic alcohols (cyclohexanol), the air pressure needed to be raised to 9 bar and a 4-5 hour of reaction was necessary to reach complete conversion. Unfortunately, this new oxidation procedure also depends on the use of dichloromethane as a solvent. In addition, the elemental bromine used as a cocatalyst is rather difficult to handle on a technical scale because of its high vapor pressure, toxicity and severe corrosion problems. Other disadvantages of this system are the rather low substrate concentration in the solvent and the observed formation of bromination by-products. [Pg.120]

The enzymatic methods are most promising, but on the other hand chemical methods are relatively independent of tertiary stmcture of the cleavage site and have technical scale-up advantages. Chemical methods are therefore very well suited for production of bioactive peptides cleaved off from a fusion protein. [Pg.221]

The chiral amino acids which are appropiate for use in synthesis must either be available commercially or be prepared readily from cheap precursors. Apart from the usual chemical suppliers, Ajinomoto (Tokyo, Japan), Degussa AG (Frankfurt, Federal Republic of Germany), Kyowa Hakko and Tanabe Seiyaku (both Tokyo, Japan) can offer the full range of amino acids and a number of derivatives from technical scale production. [Pg.170]

Most of the substrates or products which are interesting for organic chemistry are scarcely soluble in aqueous solutions. Unfortunately, enzymes are often deactivated when used in organic solvents. Successful conversions of the hydro-phobic keto compounds thus can demonstrate general reaction principles for enzyme-catalyzed transformations of hydrophobic substrates. Various concepts concerning the application of enzymes for the transformation of hydrophobic compounds have been developed, but none of them have been applied so far in technical scale. [Pg.150]

The synthesis of fluotrimazole starts from m-xylene. Peroxide catalyzed perchlorination converts this to m-trichloromethyl-benzo-trichloride. m-Trichloromethyl-benzotrifluoride is then obtained by selective chlorine/fluorine exchange. This key product is also readily accessible on a technical scale by conproportionation of the two corresponding m-trihalomethyl-benzotrihalogenides. Friedel-Crafts reaction with benzene leads to trifluoromethyl-tritylchloride, which reacts smoothly with 1,2,4-triazole in polar solvents to give fluotrimazole. [Pg.9]

The oxidation of butane (or butylene or mixtures thereof) to maleic anhydride is a successful example of the replacement of a feedstock (in this case benzene) by a more economical one (Table 1, entry 5). Process conditions are similar to the conventional process starting from aromatics or butylene. Catalysts are based on vanadium and phosphorus oxides [11]. The reaction can be performed in multitubular fixed bed or in fluidized bed reactors. To achieve high selectivity the conversion is limited to <20 % in the fixed bed reactor and the concentration of C4 is limited to values below the explosion limit of approx. 2 mol% in the feed of fixed bed reactors. The fluidized-bed reactor can be operated above the explosion limits but the selectivity is lower than for a fixed bed process. The synthesis of maleic anhydride is also an example of the intensive process development that has occurred in recent decades. In the 1990s DuPont developed and introduced a so called cataloreactant concept on a technical scale. In this process hydrocarbons are oxidized by a catalyst in a high oxidation state and the catalyst is reduced in this first reaction step. In a second reaction step the catalyst is reoxidized separately. DuPont s circulating reactor-regenerator principle thus limits total oxidation of feed and products by the absence of gas phase oxygen in the reaction step of hydrocarbon oxidation [12]. [Pg.16]

The procedures for the production of supported catalysts can be divided into two main groups, namely selective removal of one or more components out of usually nonporous bodies of a compound containing precursors of the support and the active componcnt(s), and application of (a precursor of) the active components) onto a separately produced support [2] Both procedures are carried out extensively on a technical scale... [Pg.206]

Figure 3 shows a schematic view of a flow reactor. It is similar to the photochemical reactor previously described in [5] but the UV photolysis cell has been replaced by a 1 m. stainless steel coil in a heated oil bath. As before, FTIR is used to monitor the conversion and optimise the conversion of reactant to product. Using such a system (C5Me5)Mn(CO)2(C2H4) can be obtained in a high yield as in Scheme 1. We are now scaling up this miniature reactor to a technical scale, ultimately with the aim of carrying out solvent-free reactions on a kilogramme scale. Figure 3 shows a schematic view of a flow reactor. It is similar to the photochemical reactor previously described in [5] but the UV photolysis cell has been replaced by a 1 m. stainless steel coil in a heated oil bath. As before, FTIR is used to monitor the conversion and optimise the conversion of reactant to product. Using such a system (C5Me5)Mn(CO)2(C2H4) can be obtained in a high yield as in Scheme 1. We are now scaling up this miniature reactor to a technical scale, ultimately with the aim of carrying out solvent-free reactions on a kilogramme scale.

See other pages where Technical-Scale Production is mentioned: [Pg.81]    [Pg.218]    [Pg.208]    [Pg.459]    [Pg.114]    [Pg.19]    [Pg.370]    [Pg.247]    [Pg.153]    [Pg.130]    [Pg.266]    [Pg.303]    [Pg.307]    [Pg.381]    [Pg.147]    [Pg.369]    [Pg.1]    [Pg.26]    [Pg.13]    [Pg.81]    [Pg.413]    [Pg.145]    [Pg.21]    [Pg.180]    [Pg.431]    [Pg.289]    [Pg.19]   
See also in sourсe #XX -- [ Pg.268 ]




SEARCH



Product scale

Scale production

Scale technical

© 2024 chempedia.info