Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Layer polymer, defined

The topochemical polymerization of 1,3-diene monomers based on polymer crystal engineering can be used not only for tacticity but also for the other chain structures such as molecular weight [ 102], ladder [84] or sheet [ 103] structures, and also polymer layer structures using intercalation reactions [ 104-107]. Some mechanical and structural properties have already been revealed with well-defined and highly or partly crystalline polymers [ 108-111 ]. A totally solvent-free system for the synthesis of layered polymer crystals was also reported [112]. [Pg.297]

Fig. 6-11. Scheme of the modified electrode (polymer film thickness 0) in contact with a solution containing a redox substrate. <5 is the Nernst layer thickness defined for a rotating disc electrode. From [85]. [Pg.251]

As described above, the fabrication of micro- and nano-sized patterns from the hyperbranched polymers as thin layers on defined matrix surfaces has been nicely accomplished. We went one step further and tried to generate free-standing three-dimensional structures. Since hb-PAAs can be readily... [Pg.47]

Ellipsometric data are usually interpreted in terms of one equivalent homogeneous film with a refractive index n and an ellipsometric thickness d . This homogeneous layer is defined as a layer that gives the same reflected intensity and phase shift as the actual polymer layer with a z-dependent concentration. The parameters n " and can be extracted from the experimental data using the Drude equations (sec. 1.7.10b) usually, a numerical iteration is required. [Pg.675]

Another useful model that has been employed in recent years is the soft-layer model of Ohshima and Furusawa for an ion-penetrable surface charge layer (4). In this model, the soft layer is defined as a region having fixed viscosity, frictional property and charge, with the charge distribution of mobile ions in the soft layer being considered separately in the Navier-Stokes equation. Such a model can yield layer thickness and charge density of adsorbed polyelectrolytes, or effective thicknesses of adsorbed neutral polymers. [Pg.375]

There are numerous references in the literature to irreversible adsorption from solution. Irreversible adsorption is defined as the lack of desotption from an adsoibed layer equilibrated with pure solvent. Often there is no evidence of strong surface-adsorbate bond formation, either in terms of the chemistry of the system or from direct calorimetric measurements of the heat of adsorption. It is also typical that if a better solvent is used, or a strongly competitive adsorbate, then desorption is rapid and complete. Adsorption irreversibility occurs quite frequently in polymers [4] and proteins [121-123] but has also been observed in small molecules and surfactants [124-128]. Each of these cases has a different explanation and discussion. [Pg.404]

Self-assembled monolayers (SAMs) are molecular layers tliat fonn spontaneously upon adsorjDtion by immersing a substrate into a dilute solution of tire surface-active material in an organic solvent [115]. This is probably tire most comprehensive definition and includes compounds tliat adsorb spontaneously but are neither specifically bonded to tire substrate nor have intennolecular interactions which force tire molecules to organize tliemselves in tire sense tliat a defined orientation is adopted. Some polymers, for example, belong to tliis class. They might be attached to tire substrate via weak van der Waals interactions only. [Pg.2620]

A univocal confirmation of the development of crystalline aggregation in the fiber is the occurrence of layer reflexes Oil, HI, ill, and 101 on the textural x-ray diffraction pattern. The details of organization of the space lattice are defined by the parameters of the unit cell and the number of polymers felling into one cell. The data, established by different authors, are presented in Table 2. Daubenny and Bunn s [8] pioneer findings are considered the most probable for space lattices occurring in PET fibers. [Pg.842]

Figure 15-10. Schematic band diagrams for single-layer conjugated polymer devices at various values of forward bias. Forward bias is defined with respect lo ITO. Figure 15-10. Schematic band diagrams for single-layer conjugated polymer devices at various values of forward bias. Forward bias is defined with respect lo ITO.
The first realization of a conjugated polymer/fullerene diode [89] was achieved only recently after the detection of the ultrafasl phoioinduced electron transfer for an lTO/MEH-PPV/CW)/Au system. The device is shown in Figure 15-18. Figure 15-19 shows the current-voltage characteristics of such a bilayer in the dark at room temperature. The devices discussed in the following section typically had a thickness of 100 nm for the MEH-PPV as well as the fullerene layer. Positive bias is defined as positive voltage applied to the 1TO contact. The exponential current tum-on at 0.5 V in forward bias is clearly observable. The rectification ratio at 2 V is approximately l()4. [Pg.594]

Very thin films may be also obtained through adsorption of a thin layer from solution [11,71,74] or chemical grafting [98] which is achieved by a polymerization reaction at the surface. A polymer film may also be deposited on the surface by plasma polymerization [99]. It is then, however, usually crosslinked and chemically not well-defined. [Pg.380]

The present review shows how the microhardness technique can be used to elucidate the dependence of a variety of local deformational processes upon polymer texture and morphology. Microhardness is a rather elusive quantity, that is really a combination of other mechanical properties. It is most suitably defined in terms of the pyramid indentation test. Hardness is primarily taken as a measure of the irreversible deformation mechanisms which characterize a polymeric material, though it also involves elastic and time dependent effects which depend on microstructural details. In isotropic lamellar polymers a hardness depression from ideal values, due to the finite crystal thickness, occurs. The interlamellar non-crystalline layer introduces an additional weak component which contributes further to a lowering of the hardness value. Annealing effects and chemical etching are shown to produce, on the contrary, a significant hardening of the material. The prevalent mechanisms for plastic deformation are proposed. Anisotropy behaviour for several oriented materials is critically discussed. [Pg.117]

Micro-composites are formed when the polymer chain is unable to intercalate into the silicate layer and therefore phase separated polymer/clay composites are formed. Their properties remain the same as the conventional micro-composites as shown in Figure 2(a). Intercalated nano-composite is obtained when the polymer chain is inserted between clay layers such that the interlayer spacing is expanded, but the layers still bear a well-defined spatial relationship to each other as shown in Figure 2(b). Exfoliated nano-composites are formed when the layers of the day have been completely separated and the individual layers are distributed throughout the organic matrix as shown in Figure 2(c). [Pg.32]

Conjugated polymers doped with C60 become p-type semiconductors [305,306] some LB films of two polyalkylthiophenes mixed with arachidic acid and doped with C60 have been prepared [307]. The films of polyalkylthiophene + arachidic acid -l- C60 (spread from mixtures of 1.0 0.33 0.1 ratio) on ITO glass had a well-defined layer structure, as confirmed by x-ray diffraction. The bilayer distance obtained from the Bragg equation was 5.6 nm, the same as for arachidic acid LB films. Since the films were spread on subphases containing... [Pg.113]

In this chapter we describe the basic principles involved in the controlled production and modification of two-dimensional protein crystals. These are synthesized in nature as the outermost cell surface layer (S-layer) of prokaryotic organisms and have been successfully applied as basic building blocks in a biomolecular construction kit. Most importantly, the constituent subunits of the S-layer lattices have the capability to recrystallize into iso-porous closed monolayers in suspension, at liquid-surface interfaces, on lipid films, on liposomes, and on solid supports (e.g., silicon wafers, metals, and polymers). The self-assembled monomolecular lattices have been utilized for the immobilization of functional biomolecules in an ordered fashion and for their controlled confinement in defined areas of nanometer dimension. Thus, S-layers fulfill key requirements for the development of new supramolecular materials and enable the design of a broad spectrum of nanoscale devices, as required in molecular nanotechnology, nanobiotechnology, and biomimetics [1-3]. [Pg.333]


See other pages where Layer polymer, defined is mentioned: [Pg.175]    [Pg.133]    [Pg.77]    [Pg.145]    [Pg.413]    [Pg.19]    [Pg.27]    [Pg.241]    [Pg.150]    [Pg.464]    [Pg.157]    [Pg.134]    [Pg.162]    [Pg.414]    [Pg.743]    [Pg.970]    [Pg.297]    [Pg.80]    [Pg.76]    [Pg.136]    [Pg.429]    [Pg.3]    [Pg.112]    [Pg.167]    [Pg.193]    [Pg.120]    [Pg.167]    [Pg.366]    [Pg.29]    [Pg.103]    [Pg.9]    [Pg.145]    [Pg.345]    [Pg.383]   
See also in sourсe #XX -- [ Pg.56 ]




SEARCH



Polymer defined

Polymer layers

© 2024 chempedia.info