Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Laminar electronic flow

In process controls that the operator runs during production are mentioned separately on the BPI. In the BPI model a separate section is reserved for these in-process controls. When applicable these controls are described on the same line as the preparation step to which they apply. In that way the operator is instructed to perform the control immediately after this step. In the description of the preparation, the control moments can be emphasised by mentioning them as check now. .or record now. .. This should encourage the operator to perform the control at that moment, and not at the end of the preparation. When working in a specific environment, such as laminar air flow (LAP) cabinet, the preparer cannot always interrupt his work to place his initials on a paper record as this would represent poor aseptic practice. In that particular case, a second employee may complete the BPR, and any required signatures can be completed at the end of the process. However, there are also LAP cabinets with built-in display, where the preparer can place his initials electronically. [Pg.739]

Most electrochemical detectors, such as amperometric and potentiometric detectors, are surface detectors. They respond to substances that are either oxidizable or reducible and the electrical output results from an electron flow caused by the chemical reaction that takes place at the surface of the electrodes (Rao et ah, 2002 Mehrvar and Abdi, 2004 Trojanowicz, 2009). Successful operation of a surface detector requires a reproducible radial concentration distribution. There are several types of flow-through detection cells, each type being characterized by parameters such as the length, diameter, and shape of its detection channel, which determine the laminar character of the liquid flow under the given experimental conditions and the predominant mode of the mass transport within the cell. [Pg.107]

Modelling plasma chemical systems is a complex task, because these system are far from thennodynamical equilibrium. A complete model includes the external electric circuit, the various physical volume and surface reactions, the space charges and the internal electric fields, the electron kinetics, the homogeneous chemical reactions in the plasma volume as well as the heterogeneous reactions at the walls or electrodes. These reactions are initiated primarily by the electrons. In most cases, plasma chemical reactors work with a flowing gas so that the flow conditions, laminar or turbulent, must be taken into account. As discussed before, the electron gas is not in thennodynamic equilibrium... [Pg.2810]

A numerical study of the effect of area ratio on the flow distribution in parallel flow manifolds used in a Hquid cooling module for electronic packaging demonstrate the useflilness of such a computational fluid dynamic code. The manifolds have rectangular headers and channels divided with thin baffles, as shown in Figure 12. Because the flow is laminar in small heat exchangers designed for electronic packaging or biochemical process, the inlet Reynolds numbers of 5, 50, and 250 were used for three different area ratio cases, ie, AR = 4, 8, and 16. [Pg.497]

This formula is another variation on the Affinity Laws. Monsieur s Darcy and VVeisbach were hydraulic civil engineers in France in the mid 1850s (some 50 years before Mr. H VV). They based their formulas on friction losses of water moving in open canals. They applied other friction coefficients from some private experimentation, and developed their formulas for friction losses in closed aqueduct tubes. Through the years, their coefficients have evolved to incorporate the concepts of laminar and turbulent flow, variations in viscosity, temperature, and even piping with non uniform (rough) internal. surface finishes. With. so many variables and coefficients, the D/W formula only became practical and popular after the invention of the electronic calculator. The D/W forntula is extensive and eomplicated, compared to the empirieal estimations of Mr. H W. [Pg.99]

Horizontal laminar flow clean air benches are not BSCs (Section 10.3.4). They discharge HEPA-filtered air across the work surface and toward the user. These devices only provide product protection. They can be used for certain dean activirie.s, such as the dust-free assembly of sterile equipment or electronic devices. These benches should never be used when handling potentially infectious materials. The worker can be exposed to materials on the clean bench. Horizontal clean air benches should never be used as a substitute for, i biological safety cabinet. [Pg.991]

The developed theory of two-phase laminar flow with a distinct interface which is based on a one-dimensional approximation, takes into account the major features of the process the inertia, gravity, surface tension and friction forces and leads to the physically realistic pattern of a laminar flow in a heated micro-channel. This allows one to use the present theory to study the regimes of flow as well as optimizing a cooling system of electronic devices with high power densities. [Pg.422]

The equipment needed is determined by the type and extent of the services chosen to provide. Hospitals already utilize laminar flow hoods for aseptic compounding of sterile solutions. The same hoods can be used to compound other sterile products such as eye drops. A balance, preferably electronic, is essential. Ointment slabs (pill tiles), along with spatulas of different types and materials, should be on hand. A few mortars and pestles (both of glass, ceramic, and/or plastic) should be obtained and some glassware. It may not be necessary to buy a roomful of equipment, but one should purchase what is needed to start the service, and build it up as the service grows and expands to different arenas. [Pg.22]

When transport is not able to do its job adequately and there is a change in the interfacial concentrations of electron acceptors and donors from the bulk values, there is a variation of concentration with distance from the interface toward the bulk of the solution. What matters, however, as far as the charge-transfer reaction is concerned, is the gradient of concentration at the interface because it is this gradient that drives the diffusion flux Jjy Even when there is convection with a laminar flow of electrolyte, the transport in the (assumed) stagnant layer adjacent to the electrode is by diffusion... [Pg.515]

Materials processing, via approaches like chemical vapor deposition (CVD), are important applications of chemically reacting flow. Such processes are used widely, for example, in the production of silicon-based semiconductors, compound semiconductors, optoelectronics, photovoltaics, or other thin-film electronic materials. Quite often materials processing is done in reactors with reactive gases at less than atmospheric pressure. In this case, owing to the fact that reducing pressure increases diffusive transport compared to inertial transport, the flows tend to remain laminar. [Pg.5]

This CCS technology with its intrinsic laminar flow condition enables uniform deposition for a wide range of deposition pressure, carrier gas flow rate, and substrate temperature. The deposition rates and layer composition such as co-hosting or doping are adjusted by means of mass flow rate of the carrier gas at constant source temperature using individual electronic MFCs for each source. No recircu-... [Pg.206]

These redox cells can operate on a number of scales that depend on the length of the diffusion path from the point that the oxidised form becomes reduced to the point where it reduces another sediment constituent. In some pelagic cores these diffusion paths can be observed in linear portions of the pore-water profiles (e.g. Sawlan Murray, 1983). Here the sedimentation rate and the carbon burial rate are sufficiently low, relative to diffusion, to extend the processes of early diagenesis over tens of metres into the sediment. In coastal environments the sedimentation rate and the concentration and reactivity of the organic matter is often high, which results in a much more complex pattern. In this case, the distances between the cells are much shorter, since by definition the adjustment must occur more rapidly. Like laminar and turbulent flow, there may come a point where the flow of electrons downwards is better dispersed through eddies , which in this case are transitory micro-environments with small-scale three dimensional diffusion, rather than more stable... [Pg.114]

If the characteristic linear dimension of the flow field is small enough, then the measured hydrodynamic data differ from those predicted by the Navier-Stokes equations [79]. With respect to the value in macrocharmels, in microchannels (around 50 microns of section) (i) the friction factor is about 20-30% lower, (ii) the critical Reynolds number below which the flow remains laminar is lower (e.g., the change to turbulent flow occurs at lower linear velocities) and (iii) the Nusselt number, for example, heat transfer characteristics, is quite different [80]. The Nusselt number for the microchannel is lower than the conventional value when the flow rate is small. As the flow rate through the microchannel is increased, the Nusselt number significantly increases and exceeds the value for the fully developed flow in the conventional channel. These effects have been investigated extensively in relation to the development of more efficient cooling devices for electronic applications, but have clear implications also for chemical applications. [Pg.226]

The particle sizing by field flow fractionation (FFF) is based on the different effect of a perpendicular applied field on particles in a laminar flow [63-66], The separation principle corresponds to the nature of the perpendicular field and may, for example, be based on different mass (sedimentation FFF), size (cross-flow FFF), or charge (electric-field FFF). Cross-flow FFF has been applied recently to investigate nanoemulsions, SLN, and nanostructured lipid carriers (NLC, particles composed of liquid and solid lipids) [58], Although all samples had comparable particle sizes in PCS, their retention in the FFF was very different. Compared to the spherical droplets of the nanoemulsion, SLN and NLC were pushed more efficiently to the bottom of the channel because of their anisotropic shape. Their very different shapes have been confirmed by electron microscopy. [Pg.15]


See other pages where Laminar electronic flow is mentioned: [Pg.140]    [Pg.145]    [Pg.140]    [Pg.145]    [Pg.639]    [Pg.141]    [Pg.142]    [Pg.146]    [Pg.148]    [Pg.317]    [Pg.89]    [Pg.279]    [Pg.902]    [Pg.178]    [Pg.402]    [Pg.437]    [Pg.264]    [Pg.265]    [Pg.79]    [Pg.286]    [Pg.84]    [Pg.104]    [Pg.9]    [Pg.301]    [Pg.71]    [Pg.32]    [Pg.80]    [Pg.99]    [Pg.80]    [Pg.627]    [Pg.464]    [Pg.256]    [Pg.350]    [Pg.92]    [Pg.213]   
See also in sourсe #XX -- [ Pg.140 , Pg.142 ]




SEARCH



Electron flow

© 2024 chempedia.info