Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lipases lactonization

The biotechnological production of flavour compounds is particularly focused on esters and lactones. Lipase from Mucor miehei is the most widely studied fungal lipase [30-35]. Esters of acids from acetic acid to hexanoic acid and alcohols from methanol to hexanol, geraniol and citronellol have been synthesised using lipases from Mucor miehei, Aspergillus sp., Candida rugosa, Rhizopus arrhizus and Trichosporum fermentans [32-37]. [Pg.492]

Supercritical carbon dioxide (SCCO2) was employed for the first time to prepare polyesters via ROP of lactones. Lipase-catalyzed ROP of e-CL proceeded to give a polymer (PCL) with molecular weight higher than 10". Copolymerization of e-CL with DDL afforded a random copolyester. The enzymatic polycondensation between divinyl adipate and 1,4-butane diol also took place to produce the corresponding polyester [73]. Later, a similar study on ROP of e-CL in SCCO2 followed [74]. [Pg.161]

Lipase-catalyzed intermolecular condensation of diacids with diols results in a mixture of macrocycUc lactones and liuear oligomers. Interestingly, the reaction temperature has a strong effect on the product distribution. The condensation of a,(D-diacids with a,(D-dialcohols catalyzed by Candida glindracea or Pseudomonas sp. Upases leads to macrocycUc lactones at temperatures between 55 and 75°C (91), but at lower temperatures (<45°C) the formation of oligomeric esters predorninates. Optically active trimers and pentamers can be produced at room temperature by PPL or Chromobacterium viscosum Upase-catalyzed condensation of bis (2,2,2-trichloroethyl) (+)-3-meth5ladipate and 1,6-hexanediol (92). [Pg.341]

Lipases have also been used as initiators for the polymerization of lactones such as /3-bu tyro lac tone, <5-valerolactone, e-caprolactone, and macrolides.341,352-357 In this case, the key step is the reaction of lactone with die serine residue at the catalytically active site to form an acyl-enzyme hydroxy-terminated activated intermediate. This intermediate then reacts with the terminal hydroxyl group of a n-mer chain to produce an (n + i)-mer.325,355,358,359 Enzymatic lactone polymerization follows a conventional Michaelis-Menten enzymatic kinetics353 and presents a controlled character, without termination and chain transfer,355 although more or less controlled factors, such as water content of the enzyme, may affect polymerization rate and the nature of endgroups.360... [Pg.84]

Enzyme-catalyzed stereoselective hydrolysis allows the preparation of enantio-merically enriched lactones. For instance. Pseudomonas sp. lipase (PSL) was found to be a suitable catalyst for the resolution of 5-undecalactone and 5-dodecalactone (Figure 6.20). Relactonization of the hydroxy acid represents an efficient method for the preparation of both enantiomers of a lactone [67]. [Pg.142]

Asymmetric alcoholyses catalyzed by lipases have been employed for the resolution of lactones with high enantioselectivity. The racemic P-lactone (oxetan-2-one) illustrated in Figure 6.21 was resolved by a lipase-catalyzed alcoholysis to give the corresponding (2S,3 S)-hydroxy benzyl ester and the remaining (3R,4R)-lactone [68]. Tropic acid lactone was resolved by a similar procedure [69]. These reactions are promoted by releasing the strain in the four-membered ring. [Pg.142]

Lipases also catalyze the intramolecular transesterification (lactonization) of hydroxy esters. Macrolactonization of a racemic hydroxy ester in the presence of PSL provided the corresponding (R)-lactone (Figure 6.22). This compound is the naturally occurring enantiomer of the pheromone produced by the merchant grain beetle [70]. Chemical macrolactonizations require high dilution to minimize... [Pg.142]

The first asymmetric synthesis of (—)-Y-jasmolactone, a fruit fiavor constituent, vas achieved via the enantioselective lactonization (desymmetrization) of a prochiral hydroxy diester promoted by porcine pancreas lipase (PPL) (Figure 6.23) [71]. [Pg.143]

Various cyclic esters have been subjected to hpase-catalyzed ring-opening polymerization. Lipase catalyzed the ring-opening polymerization of 4- to 17-membered non-substituted lactones.In 1993, it was first demonstrated that medium-size lactones, 8-valerolactone (8-VL, six-membered) and e-caprolactone (e-CL, seven-membered), were polymerized by lipases derived from Candida cylindracea, Burkholderia cepacia (lipase BC), Pseudomonas fluorescens (lipase PF), and porcine pancreas (PPL). °... [Pg.207]

Five-membered unsubstituted lactone, y-butyrolactone (y-BL), is not polymerized by conventional chemical catalysts. However, oligomer formation from y-BL was observed by using PPL or Pseudomonas sp. lipase as catalyst. Enzymatic polymerization of six-membered lactones, 8-VL and l,4-dioxan-2-one, was reported. 8-VL was polymerized by various lipases of different origins. The molecular weight of the enzymatically obtained polymer was relatively low (less than 2000). [Pg.208]

On the other hand, the macrolides showed unusual enzymatic reactivity. Lipase PF-catalyzed polymerization of the macrolides proceeded much faster than that of 8-CL. The lipase-catalyzed polymerizability of lactones was quantitatively evaluated by Michaelis-Menten kinetics. For all monomers, linearity was observed in the Hanes-Woolf plot, indicating that the polymerization followed Michaehs-Menten kinetics. The V, (iaotone) and K,ax(iaotone)/ m(iaotone) values increased with the ring size of lactone, whereas the A (iactone) values scarcely changed. These data imply that the enzymatic polymerizability increased as a function of the ring size, and the large enzymatic polymerizability is governed mainly by the reachon rate hut not to the binding abilities, i.e., the reaction process of... [Pg.211]

Lipase catalysis is often used for enantioselective production of chiral compounds. Lipase induced the enantioselective ring-opening polymerization of racemic lactones. In the lipase-catalyzed polymerization of racemic (3-BL, the enantioselec-tivity was low an enantioselective polymerization of (3-BL occurred by using thermophilic lipase to give (/ )-enriched PHB with 20-37% enantiomeric excess (ee). ... [Pg.219]

The enantioselectivity was greatly improved by the copolymerization with 7- or 13-membered non-substituted lactone using lipase CA catalyst (Scheme 8) the ee value reached ca. 70% in the copolymerization of (3-BL with DDL. ft is to be noted that in the case of lipase CA catalyst, the (5 )-isomer was preferentially reacted to give the (5 )-enriched optically active copolymer. The lipase CA-catalyzed copolymerization of 8-caprolactone (6-membered) with DDL enan-tioselectively proceeded, yielding the (/ )-enriched optically active polyester with ee of 76%. [Pg.219]

Reactive polyesters were enzymatically synthesized. Lipase catalysis chemoselecfively induced the ring-opening polymerization of a lactone having exo-methylene group to produce a polyester having the reactive exo-methylene group in the main chain (Scheme 16). This is in contrast to the anionic... [Pg.224]

Terminal-functionalized polymers such as macromonomers and telechelics are very important as prepolymer for construction of functional materials. Single-step functionalization of polymer terminal was achieved via lipase catalysis. Alcohols could initiate the ring-opening polymerizahon of lactones by lipase catalyst. The lipase CA-catalyzed polymerizahon of DDL in the presence of 2-hydroxyethyl methacrylate gave the methacryl-type polyester macromonomer, in which 2-hydroxyethyl methacrylate acted as initiator to introduce the methacryloyl group quanhtatively at the polymer terminal ( inihator method ).This methodology was expanded to the synthesis of oo-alkenyl- and alkynyl-type macromonomers by using 5-hexen-l-ol and 5-hexyn-l-ol as initiator, respechvely. [Pg.225]

The synthesis in Scheme 13.41 is also built on the desymmetrization concept but uses a very different intermediate. cA-5,7-Dimethylcycloheptadiene was acetoxylated with Pd(OAc)2 and the resulting all-cA-diacetate intermediate was enantioselectively hydrolyzed with a lipase to give a monoacetate that was protected as the TBDMS ether. An anti Sw2 displacement by dimethyl cuprate established the correct configuration of the C(2) methyl substituent. Oxidative ring cleavage and lactonization gave the final product. [Pg.1202]

In vitro synthesis of polyesters using isolated enzymes as catalyst via non-biosynthetic pathways is reviewed. In most cases, lipase was used as catalyst and various monomer combinations, typically oxyacids or their esters, dicarboxylic acids or their derivatives/glycols, and lactones, afforded the polyesters. The enzymatic polymerization often proceeded under mild reaction conditions in comparison with chemical processes. By utilizing characteristic properties of lipases, regio- and enantioselective polymerizations proceeded to give functional polymers, most of which are difficult to synthesize by conventional methodologies. [Pg.238]

Polyester syntheses have been achieved by enzymatic ring-opening polymerization of lactide and lactones with various ring-sizes. Here, we focus not only on these cyclic esters but also other cyclic monomers for lipase-catalyzed ringopening polymerizations. Figure 8 summarizes cyclic monomers for providing polyesters via lipase catalysis. [Pg.248]

Several small-size (four-membered) lactones have been reported to be polymerized through lipase catalysis. The polymerization of /Tpropiolactone (/ -PL) by Pseudomonas family lipases as catalyst in bulk produced a mixture of linear... [Pg.248]

Five-membered unsubstituted lactone, y-butyrolactone, is not polymerized by conventional chemical catalysts. On the other hand, oligomer formation from y-butyrolactone was observed by using PPL or Pseudomonas sp. lipase as catalyst [23,69]. [Pg.249]

Lipase catalyzed the ring-opening polymerization of medium-size lactones, d-valerolactone (<5-VL, six-membered) and -caprolactone (c-CL, seven-mem-bered). Lipases CC, PF and PPL showed high catalytic activity for the polymerization of <5-VL [74,75]. The molecular weight of the polymer obtained in bulk at 60 °C was relatively low (less than 2000). [Pg.249]

Ring-opening polymerization of a-methyl-substituted medium-size lactones, a-methyl-y-valerolactone and a-methyl-c-caprolactone, proceeded by using lipase CA catalyst in bulk [82]. As to (R)- and (S)-3-methyl-4-oxa-6-hexa-nolides (MOHELs), lipase PC induced the polymerization of both isomers. The apparent initial rate of the S-isomer was seven times larger than that of the R-isomer, indicating that the enantioselective polymerization of MOHEL took place through lipase catalysis [83]. [Pg.250]

Nine-membered lactone, 8-octanolide (8-OL), was also enzymatically polymerized [ 84]. Lipases CA and PC showed the high catalytic activity for the polymerization. [Pg.250]

The copolymerization of lactones took place through enzyme catalysis [92]. The copolymerization of e-CL with d-VL catalyzed by lipase PF affords the corresponding copolymer having a molecular weight of several thousand. From 13C NMR analysis, the copolymer was found to be of random structure having both units, suggesting the frequent occurrence of transesterifications between the polyesters. In the copolymerization of 8-OL with e-CL or DDL, random copolyesters were also formed [84], whereas the copolymer from e-CL and PDL was not statistically random [88]. [Pg.250]

Enzyme activity for the polymerization of lactones was improved by the immobilization on Celite [93]. Immobilized lipase PF adsorbed on a Celite showed much higher catalytic activity than that before the immobilization. The catalytic activity was further enhanced by the addition of a sugar or poly(ethylene glycol) in the immobilization. Surfactant-coated lipase efficiently polymerized the ring-opening polymerization of lactones in organic solvents [94]. [Pg.250]

The enzymatic polymerization of lactones is explained by considering the following reactions as the principal reaction course (Fig. 9) [83,85,95,96]. The key step is the reaction of the lactone with lipase involving the ring-opening of the lactone to give the acyl-enzyme intermediate (enzyme-activated monomer,... [Pg.250]

Fig. 9. Postulated mechanism of lactone polymerization catalyzed by lipase... Fig. 9. Postulated mechanism of lactone polymerization catalyzed by lipase...

See other pages where Lipases lactonization is mentioned: [Pg.334]    [Pg.265]    [Pg.7226]    [Pg.96]    [Pg.107]    [Pg.96]    [Pg.107]    [Pg.85]    [Pg.334]    [Pg.265]    [Pg.7226]    [Pg.96]    [Pg.107]    [Pg.96]    [Pg.107]    [Pg.85]    [Pg.143]    [Pg.487]    [Pg.207]    [Pg.208]    [Pg.208]    [Pg.209]    [Pg.209]    [Pg.210]    [Pg.210]    [Pg.211]    [Pg.211]    [Pg.216]    [Pg.251]   


SEARCH



Lipase-catalyzed lactonizations

© 2024 chempedia.info