Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lactonization enantioselective

Dimerization of methylketene is catalyzed by an amine, trimethylsilylquinine, to give the P-lactone enantioselectively (Scheme 27) [129]. The catalyst amine attacks the ketene to form an ammonium enolate, an electron donating alkene. The donor is strong enough to react with a ketene across the C=0 bond. That is why the P-lactone is obtained instead of the 1,3-cyclobutandione, the uncatalyzed dimerization product of the monosubstituted ketene. [Pg.48]

The synthetic applicability is somewhat limited in that the asymmetric induction is very substrate dependent. Esters other than benzyl esters showed lower enantiomeric excesses. The substitution pattern at the 7 position has a drastic effect on the efficiency of the asymmetric induction. Monosubstitution led to enantioselectivities around 35% ee (with inductor 19, — 40°C). In the case of unsubstituted 7 position, the induction went down to 10% ee [39]. For lactones, enantioselectivities up to 43% ee were reported (inductor 20, — 55°C) [40]. [Pg.323]

The Chi group disclosed the first oxidative y-addition of enals to trifluo-romethyl ketones and enantioselective control via Lewis acid/NHC cooperative catalysis to give unsaturated 5-lactones. Enantioselective control involving the relatively remote enal y-carbon was achieved via Lewis acid and NHC cooperative catalysis (up to 81% yield and 94% ee). A reaction pathway... [Pg.347]

Lipase P. cepacia Activated PEGj Lactonization, enantioselectivity, regioselectivity Benzene, trichloroethane, decanol 63, 88, 89... [Pg.720]

The wM-diacetate 363 can be transformed into either enantiomer of the 4-substituted 2-cyclohexen-l-ol 364 via the enzymatic hydrolysis. By changing the relative reactivity of the allylic leaving groups (acetate and the more reactive carbonate), either enantiomer of 4-substituted cyclohexenyl acetate is accessible by choice. Then the enantioselective synthesis of (7 )- and (S)-5-substituted 1,3-cyclohexadienes 365 and 367 can be achieved. The Pd(II)-cat-alyzed acetoxylactonization of the diene acids affords the lactones 366 and 368 of different stereochemistry[310]. The tropane alkaloid skeletons 370 and 371 have been constructed based on this chemoselective Pd-catalyzed reactions of 6-benzyloxy-l,3-cycloheptadiene (369)[311]. [Pg.70]

Soon after the disclosure of the total synthesis of ( )-gingkolide B, (see ref. 8a) Corey reported a concise, enantioselective synthesis of tetracyclic lactone 23, see Corey, E. J. Gavai, A. V. Tetrahedron Lett. 1988, 29, 3201. Thus, in principle, gingkolide B could be synthesized in its naturally occurring enantiomeric form. [Pg.464]

An (E)-selective CM reaction with an acrylate (Scheme 61) was applied by Smith and O Doherty in the enantioselective synthesis of three natural products with cyclooxygenase inhibitory activity (cryptocarya triacetate (312), cryptocaryolone (313), and cryptocaryolone diacetate (314)) [142]. CM reaction of homoallylic alcohol 309 with ethyl acrylate mediated by catalyst C led (E)-selectively to d-hydroxy enoate 310 in near quantitative yield. Subsequent Evans acetal-forming reaction of 310, which required the trans double bond in 310 to prevent lactonization, led to key intermediate 311 that was converted to 312-314. [Pg.332]

CHMO is known to catalyze a number of enantioselective BV reactions, including the kinetic resolution of certain racemic ketones and desymmetrization of prochiral substrates [84—87]. An example is the desymmetrization of 4-methylcyclohexanone, which affords the (S)-configurated seven-membered lactone with 98% ee [84,87]. Of course, many ketones fail to react with acceptable levels of enantioselectivity, or are not even accepted by the enzyme. [Pg.50]

The initial results of an early directed evolution study are all the more significant, because no X-ray data or homology models were available then to serve as a possible guide [89]. In a model study using whole E. coU cells containing the CHMO from Adnetohacter sp. NCIM B9871,4-hydroxy-cydohexanone (3 5) was used as the substrate. The WT leads to the preferential formation of the primary product (i )-36, which spontaneously rearranges to the thermodynamically more stable lactone (R)-37. The enantiomeric excess of this desymmetrization is only 9%, and the sense of enantioselectivity (R) is opposite to the usually observed (S)-preference displayed by simple 4-alkyl-substituted cydohexanone derivatives (see Scheme 2.10) [84—87]. [Pg.50]

As the WT CHMO was known to react (S) selectively with simple four-substituted cyclohexanone derivatives [84—87], it was logical to test mutant 1-K2-F5 as a catalyst in the BV reaction of other ketones. For example, when 4-methoxycyclohexanone (38) was subjected to the BV reaction catalyzed by mutant 1-K2-F5, almost complete enantioselectivity was observed in favor of the (S)-lactone (39) (98.5% ee), in contrast to the WT, which is considerably less selective (78% ee) (see Scheme 2.11) [89]. [Pg.51]

Asymmetric alcoholyses catalyzed by lipases have been employed for the resolution of lactones with high enantioselectivity. The racemic P-lactone (oxetan-2-one) illustrated in Figure 6.21 was resolved by a lipase-catalyzed alcoholysis to give the corresponding (2S,3 S)-hydroxy benzyl ester and the remaining (3R,4R)-lactone [68]. Tropic acid lactone was resolved by a similar procedure [69]. These reactions are promoted by releasing the strain in the four-membered ring. [Pg.142]

The first asymmetric synthesis of (—)-Y-jasmolactone, a fruit fiavor constituent, vas achieved via the enantioselective lactonization (desymmetrization) of a prochiral hydroxy diester promoted by porcine pancreas lipase (PPL) (Figure 6.23) [71]. [Pg.143]

Oxazolones (azlactones) are a form of activated lactones, so they are included in this section. CAL-B is an effective catalyst for the DKR of various racemic four-substituted-5 (4H)-oxazolones, in the presence of an alcohol, yielding optically active N-benzoyl amino acid esters as illustrated in Figure 6.24 [40]. Enantioselective biotransformations of lactides [72,73] and thiolactones ]74] have also been reported. [Pg.143]

While wild-type PAMO was unable to convert 2-phenylcyclohexanone efficiently, all deletion mutants readily accepted this ketone as substrate. All mutants also displayed a similar thermostability when compared with the parent enzyme. The most active mutant (deletion of S441 and A442) was used for examining its enantioselective properties. It was found that the mutant preferably formed the (/ )-enantiomer of the corresponding lactone E = 100). While CHMO also shows a similar enantioselective behavior, this PAMO deletion mutant is a better candidate for future applications due to its superior stability. This clearly demonstrates that PAMO can be used as parent enzyme to design thermostable BVMO variants. It also illustrates that the available crystal structure of PAMO will be of great help for BVMO redesign efforts. ... [Pg.122]

Lipase catalysis is often used for enantioselective production of chiral compounds. Lipase induced the enantioselective ring-opening polymerization of racemic lactones. In the lipase-catalyzed polymerization of racemic (3-BL, the enantioselec-tivity was low an enantioselective polymerization of (3-BL occurred by using thermophilic lipase to give (/ )-enriched PHB with 20-37% enantiomeric excess (ee). ... [Pg.219]

The enantioselectivity was greatly improved by the copolymerization with 7- or 13-membered non-substituted lactone using lipase CA catalyst (Scheme 8) the ee value reached ca. 70% in the copolymerization of (3-BL with DDL. ft is to be noted that in the case of lipase CA catalyst, the (5 )-isomer was preferentially reacted to give the (5 )-enriched optically active copolymer. The lipase CA-catalyzed copolymerization of 8-caprolactone (6-membered) with DDL enan-tioselectively proceeded, yielding the (/ )-enriched optically active polyester with ee of 76%. [Pg.219]

You and co-workers have demonstrated enantioselective y-lactone formations nsing glyoxalate 163, achieving up to 78% ee with the NHC derived from chiral triazohum salt 164, although with low levels of diastereoselectivity (Scheme 12.35) [70],... [Pg.282]

Nair and co-workers have demonstrated NHC-catalysed formation of spirocyclic diketones 173 from a,P-unsaturated aldehydes 174 and snbstitnted dibenzylidine-cyclopentanones 175. Where chalcones and dibenzylidene cyclohexanones give only cyclopentene products (as a result of P-lactone formation then decarboxylation), cyclopentanones 175 give only the spirocychc diketone prodncts 173 [73]. Of particular note is the formation of an all-carbon quaternary centre and the excellent level of diastereoselectivity observed in the reaction. An asymmetric variant of this reaction has been demonstrated by Bode using chiral imidazolium salt 176, obtaining the desymmetrised product with good diastereo- and enantioselectivity, though in modest yield (Scheme 12.38) [74],... [Pg.283]

In recent years, the variety of useful diazo substrates for asymmetric intramolecular cyclopropanation processes has really expanded. As another example, Charette and Wurz have reported the first example of an intramolecular cyclopropanation involving a-nitro-a-diazo carbonyl compounds.This reaction, catalysed by Rh2[(S)-DOSP]4, led to the formation of nine-membered nitrocyclopropyl lactones in good yields and enantioselectivities with extremely high diastereoselectivities (Scheme 6.17). This novel methodology constituted an efficient entry into chiral functionalised macrocyclic-fused cyclopropane oc-amino acids. [Pg.221]

The existence of ketenes was established over a hundred years ago, and, in recent years, asymmetric synthesis based on [2 + 2] cycloadditions of ketenes with carbonyl compounds to form chiral p-lactones has been achieved with high yields and high stereoselectivities. In 1994, Miyano et al. reported the use of Ca-symmetric bis(sulfonamides) as ligands of trialkylaluminum complexes to promote the asymmetric [2 + 2] cycloaddition of ketenes with aldehydes. The corresponding oxetanones were obtained in good yields and enantioselectivities... [Pg.304]

The highly ordered cyclic TS of the D-A reaction permits design of diastereo-or enantioselective reactions. (See Section 2.4 of Part A to review the principles of diastereoselectivity and enantioselectivity.) One way to achieve this is to install a chiral auxiliary.80 The cycloaddition proceeds to give two diastereomeric products that can be separated and purified. Because of the lower temperature required and the greater stereoselectivity observed in Lewis acid-catalyzed reactions, the best diastereoselectivity is observed in catalyzed reactions. Several chiral auxiliaries that are capable of high levels of diastereoselectivity have been developed. Chiral esters and amides of acrylic acid are particularly useful because the auxiliary can be recovered by hydrolysis of the purified adduct to give the enantiomerically pure carboxylic acid. Early examples involved acryloyl esters of chiral alcohols, including lactates and mandelates. Esters of the lactone of 2,4-dihydroxy-3,3-dimethylbutanoic acid (pantolactone) have also proven useful. [Pg.499]


See other pages where Lactonization enantioselective is mentioned: [Pg.1417]    [Pg.1417]    [Pg.524]    [Pg.349]    [Pg.163]    [Pg.168]    [Pg.132]    [Pg.78]    [Pg.534]    [Pg.693]    [Pg.296]    [Pg.48]    [Pg.142]    [Pg.1043]    [Pg.1249]    [Pg.297]    [Pg.118]    [Pg.117]    [Pg.119]    [Pg.286]    [Pg.293]    [Pg.75]    [Pg.337]   
See also in sourсe #XX -- [ Pg.6 , Pg.337 ]

See also in sourсe #XX -- [ Pg.337 ]

See also in sourсe #XX -- [ Pg.6 , Pg.337 ]

See also in sourсe #XX -- [ Pg.337 ]




SEARCH



Enantioselective hydrogenation keto lactones

Enantioselective keto lactones

Enantioselective separation, lactones

Enantioselectivity enantioselective lactone

Enantioselectivity lactone formation

Hydroxy ester enantioselective lactonization

Lactone enantioselective

Lactone enantioselective

Lactones enantioselective formation

Lactones enantioselective ring-opening

Racemic lactones enantioselective opening

© 2024 chempedia.info