Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kinetics mass transfer coefficient

Mass transfer kinetics mass transfer coefficients and mass transfer areas... [Pg.195]

According to this method, it is not necessaiy to investigate the kinetics of the chemical reactions in detail, nor is it necessary to determine the solubihties or the diffusivities of the various reactants in their unreacted forms. To use the method for scaling up, it is necessaiy independently to obtain data on the values of the interfacial area per unit volume a and the physical mass-transfer coefficient /c for the commercial packed tower. Once these data have been measured and tabulated, they can be used directly for scahng up the experimental laboratory data for any new chemic ly reac ting system. [Pg.1366]

Table 3.1 shows the kinetic parameters for cell growth, rate models with or without inhibition and mass transfer coefficient calculation at various acetate concentrations in the culture media. The Monod constant value, KM, in the liquid phase depends on some parameters such as temperature, initial concentration of the carbon source, presence of trace metals, vitamin B solution, light intensity and agitation speeds. The initial acetate concentrations in the liquid phase reflected the value of the Monod constants, Kp and Kp. The average value for maximum specific growth rate (/xm) was 0.01 h. The value... [Pg.64]

Checking the absence of external mass transfer limitations is a rather easy procedure. One has simply to vary the total volumetric flowrate while keeping constant the partial pressures of the reactants. In the absence of external mass transfer limitations the rate of consumption of reactants does not change with varying flowrate. As kinetic rate constants increase exponentially with increasing temperature while the dependence of mass transfer coefficient on temperature is weak ( T in the worst case), absence... [Pg.553]

OS 63] ]R 27] ]P 46] Experimental results were compared with a kinetic model taking into account liquid/liquid mass transfer resistance [117]. Calculated and experimental conversions were plotted versus residence time the corresponding dependence of the mass-transfer coefficient k,a is also given as well (Figure 4.78). [Pg.509]

The cyclohexene hydrogenation is a well-studied process especially in conventional trickle-bed reactors (see original citations in [11,12]) and thus serves well as a model reaction. In particular, flow-pattern maps were derived and kinetics were determined. In addition, mass transfer can be analysed quantitatively for new reactor concepts and processing conditions, as overall mass transfer coefficients were determined and energy dissipations are known. In lieu of benchmarking micro-reactor performance to that of conventional equipment such as trickle-bed reactors, such a knowledge base facilitates proper, reliable and detailed comparison. [Pg.620]

Estimation of parameters. Model parameters in the selected model are then estimated. If available, some model parameters (e.g. thermodynamic properties, heat- and mass-transfer coefficient, etc.) are taken from literature. This is usually not possible for kinetic parameters. These should be estimated based on data obtained from laboratory expieriments, if possible carried out isothermal ly and not falsified by heat- and mass-transport phenomena. The methods for parameter estimation, also the kinetic parameters in complex organic systems, and for discrimination between models are discussed in more detail in Section 5.4.4. More information on parameter estimation the reader will find in review papers by Kittrell (1970), or Froment and Hosten (1981) or in the book by Froment and Bischoff (1990). [Pg.234]

Laboratory reactors for studying gas-liquid processes can be classified as (1) reactors for which the hydrodynamics is well known or can easily be determined, i.e. reactors for which the interfacial area, a, and mass-transfer coefficients, ki and kc, are known (e.g. the laminar jet reactor, wetted wall-column, and rotating drum, see Fig. 5.4-21), and (2) those with a well-defined interfacial area and ill-determined hydrodynamics (e.g. the stirred-cell reactor, see Fig. 5.4-22). Reactors of these two types can be successfully used for studying intrinsic kinetics of gas-liquid processes. They can also be used for studying liquid-liquid and liquid-solid processes. [Pg.300]

It was shown later that a mass transfer rate sufficiently high to measure the rate constant of potassium transfer [reaction (10a)] under steady-state conditions can be obtained using nanometer-sized pipettes (r < 250 nm) [8a]. Assuming uniform accessibility of the ITIES, the standard rate constant (k°) and transfer coefficient (a) were found by fitting the experimental data to Eq. (7) (Fig. 8). (Alternatively, the kinetic parameters of the interfacial reaction can be evaluated by the three-point method, i.e., the half-wave potential, iii/2, and two quartile potentials, and ii3/4 [8a,27].) A number of voltam-mograms obtained at 5-250 nm pipettes yielded similar values of kinetic parameters, = 1.3 0.6 cm/s, and a = 0.4 0.1. Importantly, no apparent correlation was found between the measured rate constant and the pipette size. The mass transfer coefficient for a 10 nm-radius pipette is > 10 cm/s (assuming D = 10 cm /s). Thus the upper limit for the determinable heterogeneous rate constant is at least 50 cm/s. [Pg.392]

The RHSE has the same limitation as the rotating disk that it cannot be used to study very fast electrochemical reactions. Since the evaluation of kinetic data with a RHSE requires a potential sweep to gradually change the reaction rate from the state of charge-transfer control to the state of mass transport control, the reaction rate constant thus determined can never exceed the rate of mass transfer to the electrode surface. An upper limit can be estimated by using Eq. (44). If one uses a typical Schmidt number of Sc 1000, a diffusivity D 10 5 cm/s, a nominal hemisphere radius a 0.3 cm, and a practically achievable rotational speed of 10000 rpm (Re 104), the mass transfer coefficient in laminar flow may be estimated to be ... [Pg.201]

Quite new ideas for the reactor design of aqueous multiphase fluid/fluid reactions have been reported by researchers from Oxeno. In packed tubular reactors and under unconventional reaction conditions they observed very high space-time yields which increased the rate compared with conventional operation by a factor of 10 due to a combination of mass transfer area and kinetics [29]. Thus the old question of aqueous-biphase hydroformylation "Where does the reaction takes place " - i.e., at the interphase or the bulk of the liquid phase [23,56h] - is again questionable, at least under the conditions (packed tubular reactors, other hydrodynamic conditions, in mini plants, and in the unusual,and costly presence of ethylene glycol) and not in harsh industrial operation. The considerable reduction of the laminar boundary layer in highly loaded packed tubular reactors increases the mass transfer coefficients, thus Oxeno claim the successful hydroformylation of 1-octene [25a,26,29c,49a,49e,58d,58f], The search for a new reactor design may also include operation in microreactors [59]. [Pg.112]

Comparing the development here to the accounting for the kinetics of mineral precipitation and dissolution presented in the previous chapter (Chapter 16), we see the mass transfer coefficients v and so on serve a function parallel to the coefficients v , etc., in Reaction 16.1. The rates of change in the mole number of each basis entry, accounting for the effect of each kinetic redox reaction carried in the simulation, for example,... [Pg.253]

It is obvious that the effect of mixing must be taken into account in order to get reliable kinetic data. Such factors as k%a and kia, the mass transfer coefficients, are largely determined by mixing efficiency, especially in heterogeneous systems. [Pg.132]

Many correlations exist for the mass transfer coefficient, kda, so it is not usually necessary to evaluate it during a kinetic investigation. [Pg.52]

Chemical reaction rates, 14 607. See also Kinetic measurements Chemical reactions. See also Chemical processes Reaction entries with absorption, 2 47-48, 71-76 activated carbon for control of, 4 755 on adsorbents, 2 629-630, 650-651 atomic level of, 16 736 contexts of, 22 336 engine knock and, 22 390—391 heterogeneous, 22 331-332, 339 homogeneous, 22 339 independent and dependent, 22 336—337 mass-transfer coefficients with, 20 753-755... [Pg.169]

The membrane and diffusion-media modeling equations apply to the same variables in the same phase in the catalyst layer. The rate of evaporation or condensation, eq 39, relates the water concentration in the gas and liquid phases. For the water content and chemical potential in the membrane, various approaches can be used, as discussed in section 4.2. If liquid water exists, a supersaturated isotherm can be used, or the liquid pressure can be assumed to be either continuous or related through a mass-transfer coefficient. If there is only water vapor, an isotherm is used. To relate the reactant and product concentrations, potentials, and currents in the phases within the catalyst layer, kinetic expressions (eqs 12 and 13) are used along with zero values for the divergence of the total current (eq 27). [Pg.463]

For simplicity, this section discusses only the mass transfer of one component in a liquid-liquid system with negligible miscibility of both liquids and with one transitional component. On the other hand, calculations must consider mass transfer rates of several components and more or less strong variation in the mass flows along the column, where both complicate the equation considerably [21-23]. Chemical reactions may cause further complications. Their kinetics can enhance the mass transfer coefficients and, therefore, the reaction equations have to be part of the mathematical model of the extractor [24,25]. [Pg.405]

The equations are also coupled by the mass transfer coefficient This is the standard mass transfer problem we encountered with catalytic reactions. As with catalytic reactors, processes are very often limited by mass transfer so that the kinetics become unimportant in predicting performance. [Pg.483]

The connection of the overall mass transfer coefficient of the lumped kinetic and the parameters of the general rate model is... [Pg.284]

Dungan et al. [186] have measured the interfacial mass transfer coefficients for the transfer of proteins (a-chymotrypsin and cytochrome C) between a bulk aqueous phase and a reverse micellar phase using a stirred diffusion cell and showed that charge interactions play a dominant role in the interfacial forward transport kinetics. The flux of protein across the bulk interface separating an aqueous buffered solution and a reverse micellar phase was measured for the purpose. Kinetic parameters for the transfer of proteins to or from a reverse micellar solution were determined at a given salt concentration, pH, and stirring... [Pg.152]


See other pages where Kinetics mass transfer coefficient is mentioned: [Pg.170]    [Pg.1211]    [Pg.170]    [Pg.1211]    [Pg.286]    [Pg.338]    [Pg.227]    [Pg.416]    [Pg.427]    [Pg.37]    [Pg.125]    [Pg.268]    [Pg.292]    [Pg.338]    [Pg.384]    [Pg.569]    [Pg.448]    [Pg.139]    [Pg.12]    [Pg.474]    [Pg.338]    [Pg.183]    [Pg.79]    [Pg.209]    [Pg.9]    [Pg.11]    [Pg.317]    [Pg.401]    [Pg.315]    [Pg.52]    [Pg.76]   
See also in sourсe #XX -- [ Pg.519 ]




SEARCH



Kinetic coefficients

Kinetic transfer

Kinetics mass transfer

Kinetics transfer coefficient

Mass coefficient

Mass kinetics

Mass transfer coefficient

© 2024 chempedia.info