Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymerization growing chain

More recent studies on kinetics and DFT modeling with a variety of tin(ii) complexes provided more insight into the growing-chain mechanism. It is acknowledged that alcohol is a proton source promoting the opening of lactide. " The polymeric growing chain can be coordinated to tin via two... [Pg.247]

Inhibitors slow or stop polymerization by reacting with the initiator or the growing polymer chain. The free radical formed from an inhibitor must be sufficiently unreactive that it does not function as a chain-transfer agent and begin another growing chain. Benzoquinone is a typical free-radical chain inhibitor. The resonance-stabilized free radical usually dimerizes or disproportionates to produce inert products and end the chain process. [Pg.1010]

Positional isomerism is conveniently illustrated by considering the polymerization of a vinyl monomer. In such a reaction, the adding monomer may become attached to the growing chain in either of two orientations ... [Pg.23]

When [A] [B], both ends of the growing chain tend to be terminated by the group which is present in excess. Subsequent reaction of such a molecule involves reaction with the limiting group. The effect is a decrease in the maximum attainable degree of polymerization. [Pg.298]

Hexafluoiopiopylene and tetiafluoioethylene aie copolymerized, with trichloiacetyl peroxide as the catalyst, at low temperature (43). Newer catalytic methods, including irradiation, achieve copolymerization at different temperatures (44,45). Aqueous and nonaqueous dispersion polymerizations appear to be the most convenient routes to commercial production (1,46—50). The polymerization conditions are similar to those of TFE homopolymer dispersion polymerization. The copolymer of HFP—TFE is a random copolymer that is, HFP units add to the growing chains at random intervals. The optimal composition of the copolymer requires that the mechanical properties are retained in the usable range and that the melt viscosity is low enough for easy melt processing. [Pg.359]

Polymerization and Spinning Solvent. Dimethyl sulfoxide is used as a solvent for the polymerization of acrylonitrile and other vinyl monomers, eg, methyl methacrylate and styrene (82,83). The low incidence of transfer from the growing chain to DMSO leads to high molecular weights. Copolymerization reactions of acrylonitrile with other vinyl monomers are also mn in DMSO. Monomer mixtures of acrylonitrile, styrene, vinyUdene chloride, methallylsulfonic acid, styrenesulfonic acid, etc, are polymerized in DMSO—water (84). In some cases, the fibers are spun from the reaction solutions into DMSO—water baths. [Pg.112]

If a vinyl monomer is polymerized in the presence of cellulose by a free radical process, a hydrogen atom may be abstracted from the cellulose by a growing chain radical (chain transfer) or by a radical formed by the polymerization catalyst (initiator). This leaves an unshared electron on the cellulose chain that is capable of initiating grafting. As cellulose is a very poor transfer agent [10], very little copolymer results from the abstraction of hydrogen atoms by a growing chain radical. The... [Pg.529]

Radical polymerizations of macromonomers are greatly influenced by the diffusion control effect [44]. Segmental diffusivity and translational diffusivity of the growing chains of macromonomers are strongly affected by the feed concentration and the molecular weight of the macromonomers. Furthermore, there is little difference in the degree of polymerization between macro-... [Pg.729]

Monomer A is polymerized initiated with a pair of radicals formed by thermolysis of an active site of macroinitiator. Since growing chain A propagates from the residual segment of the initiator, polymer A thus formed retains unreacted active sites in the chain end. [Pg.755]

Addition polymerization is employed primarily with substituted or unsuhstituted olefins and conjugated diolefins. Addition polymerization initiators are free radicals, anions, cations, and coordination compounds. In addition polymerization, a chain grows simply hy adding monomer molecules to a propagating chain. The first step is to add a free radical, a cationic or an anionic initiator (I ) to the monomer. For example, in ethylene polymerization (with a special catalyst), the chain grows hy attaching the ethylene units one after another until the polymer terminates. This type of addition produces a linear polymer ... [Pg.304]

Unlike polyethylene and other simple aikene polymers, natural rubber is a polymer of a diene, isoprene (2-methyl-l,3-butadiene). The polymerization takes place by addition of isoprene monomer units to the growing chain, leading to formation of a polymer that still contains double bonds spaced regularly at four-carbon intervals. As the following structure shows, these double bonds have Z stereochemistry ... [Pg.245]

Conjugated dienes can be polymerized just as simple alkenes can (Section 7.10). Diene polymers are structurally more complex than simple alkene polymers, though, because double bonds remain every four carbon atoms along the chain, leading to the possibility of cis-trans isomers. The initiator (In) for the reaction can be either a radical, as occurs in ethylene polymerization, or an acid. Note that the polymerization is a 1,4-addition of the growing chain to a conjugated diene monomer. [Pg.498]

We shall consider now the various degrees of order which characterize polymeric molecules. The addition of a monomeric unit to a growing chain may take place in more than one way. In the case of a vinyl or vinylidine monomer, i.e., CH2—CHA or CH2—CAB, head-to-head or head-to-tail addition may occur. In most cases the head-to-tail addition has a vastly greater probability than the head-to-head or tail-to-tail addition, and thus the latter is responsible only for small imperfections in the chain structure. Studies of head-to-tail and head-to-head additions were vigorously pursued in the 30 s and 40 s, and a good account of this work is available, for example, in Flory s recent monograph.15... [Pg.164]

The termination step of a polymerization involves a reaction which destroys the activity of the growing end and thus leads to cessation of its growth. The resulting polymeric molecule is frequently referred to as a dead polymer. If the activity of a growing chain is transferred to another molecule, the process is referred to as chain transfer if it is lost entirely, a normal termination step is involved. [Pg.173]

In anionic polymerization, as in carbonium ion polymerization, termination does not involve bimolecular reaction between two growing chains. Neither can recombination of ions lead to termination, since a carbon-metal bond is highly polar, in the case of alkali metals frequently completely ionized, and in every case very reactive. The termination step leading to the formation of a terminal C=C double bond is not too probable. This reaction involves the formation of a metal hydride, and this does not contribute greatly to the driving force. Consequently, such a termination is observed at higher temperatures only and it is probably more common in coordination polymerization where the metals involved are less electropositive. [Pg.176]

Acrylamides represent still another interesting class of monomers.6 Their anionic polymerization may be initiated by strong bases, like, e.g., amides. The growing chain contains the unit —CH2—CH —CO—NH2 and intramolecular proton transfer competes efficiently with its carbanionic growth. Since the rearrangement... [Pg.181]

Methyl-2-furaldehyde gave a similar overall behaviour, but a penultimate effect was observed in its copolymerization with isopropenylbenzene whereby two molecules of the aldehyde could add together if the penultimate unit in the growing chain was from the olefin. This was borne out by the copolymers composition and spectra. The values of the reactivity ratios showed this interesting behaviour rx = 1.0 0.1, r2 = 0.0 0.1. An apparent paradox occurred the aldehyde, which could not homo-polymerize, had equal probability of homo- and copolymerization and the olefin, which homopolymerized readily, could only alternate. The structure arising from this situation was close to a regular sequence of the type ... [Pg.84]

In the period 1910-1950 many contributed to the development of free-radical polymerization.1 The basic mechanism as we know it today (Scheme 1.1), was laid out in the 1940s and 50s.7 9 The essential features of this mechanism are initiation and propagation steps, which involve radicals adding to the less substituted end of the double bond ("tail addition"), and a termination step, which involves disproportionation or combination between two growing chains. [Pg.2]

The initiator or iniferter determines the number of growing chains. Several methods of initiation are used. Only three will be considered here. The first involves direct use of a species 1-X (e.g. a dilhiocarbamale ester - Section 9.3.2 or an alkoxyamine - Section 9.3.6) as shown in Scheme 9.4. Ideally, the degree of polymerization is given by eq. I and the molecular weight by eq. 2. [Pg.458]

In ATRP, the initiator (RX) determines the number of growing chains. Ideally, the degree of polymerization is given by eq. 7 and the molecular weight by cq. 8. Note the appearance of the initiator efficiency (/ ) in the numerator of these expressions. In practice, the molecular weight is ofien higher than anticipated because the initiator efficiency is decreased by side reactions. In some cases, these take the form of heterolytic decomposition or elimination reactions. Further redox chemistry of the initially formed radicals is also known. The initiator efficiencies are dependent on the particular catalyst employed. [Pg.490]

There are two possible ways to interprete the decrease in the EQ-H% of the polymers with rise in temperature and/or the polarity of the solvent. The first is the concept that the growing chain end in the cationic polymerization of 2 consists of the cyclic trialkyloxonium ion 11 and the oxycarbenium ion 14, the latter of which is... [Pg.52]


See other pages where Polymerization growing chain is mentioned: [Pg.26]    [Pg.118]    [Pg.26]    [Pg.118]    [Pg.2515]    [Pg.1008]    [Pg.328]    [Pg.401]    [Pg.328]    [Pg.436]    [Pg.426]    [Pg.516]    [Pg.524]    [Pg.526]    [Pg.538]    [Pg.4]    [Pg.825]    [Pg.826]    [Pg.828]    [Pg.127]    [Pg.494]    [Pg.503]    [Pg.732]    [Pg.158]    [Pg.166]    [Pg.166]    [Pg.167]    [Pg.176]    [Pg.58]    [Pg.88]    [Pg.103]    [Pg.455]   
See also in sourсe #XX -- [ Pg.1420 ]




SEARCH



Growing

Growing chain

© 2024 chempedia.info