Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Jeffreyi

The aliphatic hydrocarbon heptane, CyHjg, has recently been discovered as a constituent of the oil obtained by the distillation of the resinous exudation of Pinus Sabiniana, Pinus Jeffreyi, and a few other essential oils. It is a highly volatile liquid of specific gravity 0 688 and boils at 98 to 99°. It has, probably, the lowest specific gravity of all liquids found naturally in essential oils. [Pg.38]

Evidence for de novo synthesis of pheromone components was obtained by showing that labeled acetate and mevalonate were incorporated into ipsdienol by male Ips pini [103,104]. Similarly, labeled acetate and other labeled intermediates were shown to be incorporated into frontalin in a number of Dendroctonus species [105]. Possible precursors to frontalin include 6-methyl-6-hep-ten-2-one, which was incorporated into frontalin by D. ruffipennis [106]. The precursor 6-methyl-6-hepten-2-one also was shown to be converted to bre-vicomin in the bark beetle, Dendroctonus ponderosae [107]. In addition, the expression patterns of HMG-CoA reductase and HMG-CoA synthase are tightly correlated with frontalin production in Dendroctonus jeffreyi [108, 109]. A geranyl diphosphate synthase cDNA from I. pini was also isolated, functionally expressed, and modeled [110]. These data indicate that the de novo isoprenoid biosynthetic pathway is present in bark beetles. A variety of other monoterpene alcohols such as myrcenol, pityol, and sulcitol are probably synthesized through similar pathways [111]... [Pg.116]

It is well known that dogs track better in humid air. Rodents find buried seeds better in wet soil. This is important in arid climates. After rains, yellow pine chipmunks, Tamias amoenus, and deer mice, Peromyscus maniculatus found experimentally buried seeds of Jeffrey pine, Pinus jeffreyi, and antelope bitterbrush, Purshia tridentata, better than in diy soil. The recovered number of seeds increased 27- and 15-fold, respectively. In wet soil, seeds take up water rapidly and emanate volatile organic compounds that the rodents exploit. By extension, variations in humidity in arid environments may have profound effects on olfaction-dependent behaviors such as finding food, social interactions, preying, and predator avoidance (Vander Wall 1998). [Pg.5]

Surface lipids of plants. The thick cuticle (Fig. 1-6) that covers the outer surfaces of green plants consists largely of waxes and other lipids but also contains a complex polymeric matrix of cutin (stems and leaves) or suberin (roots and wound surfaces).135/135a Plant waxes commonly have C10 - C30 chains in both acid and alcohol components. Methyl branches are frequently present. A major function of the waxes is to inhibit evaporation of water and to protect the outer cell layer. In addition, the methyl branched components may inhibit enzymatic breakdown by microbes. Free fatty acids, free alcohols, aldehydes, ketones, 13-dike tones, and alkanes are also present in plant surface waxes. Chain lengths are usually C20 - C35.136 Hydrocarbon formation can occur in other parts of a plant as well as in the cuticle. Thus, normal heptane constitutes up to 98% of the volatile portion of the turpentine of Pin us jeffreyi.81... [Pg.1196]

Hall G. M., Tittiger C., Blomquist G. J., Andrews G., Mastick G., Barkawi L. A., Bengoa C. S. and Seybold S. J. (2002b) Male Jeffrey Pine Beetles, Dendroctonus jeffreyi, synthesize the pheromone component frontalin in anterior midgut tissue. Insect Biochem. Mol. Biol. 32, 1525-1532. [Pg.14]

Nardi J. B., Gilg Young A., Ujhelyi E., Tittiger C., Lehane M. J. and Blomquist G. J. (2002) Specialization of midgut cells for synthesis of male isoprenoid pheromone in two scolytid beetles, Dendroctonus jeffreyi and Ips pini. Tissue and Cell. 226, 221— 231. [Pg.15]

Specialization of midgut cells for synthesis of male isoprenoid pheromone components in two scolytid beetles, Dendroctonus jeffreyi and Ips pini. Tissue Cell. (in press). [Pg.48]

Figure 6.13 Examples of the application of normal-phase, radio-HPLC to the analysis of de novo biosynthetic pathways in bark beetles (Scolytidae). Demonstration of sex-specific de novo biosynthesis of ipsenol, ipsdienol, and amitinol through radio-HPLC analysis of pentane extracts of Porapak-trapped volatiles from (A) male and (B) female Ips paraconfusus Lanier feeding for 168 h in Pinus ponderosa and (C) male and (D) female Ips pini (Say) feeding for 168 h in Pinus jeffreyi (Seybold et al., 1995b). Demonstration of sex-specific de novo biosynthesis of frontalin through radio-HPLC analysis of pentane extracts of Porapak-trapped volatiles from (E) male and (F) female... Figure 6.13 Examples of the application of normal-phase, radio-HPLC to the analysis of de novo biosynthetic pathways in bark beetles (Scolytidae). Demonstration of sex-specific de novo biosynthesis of ipsenol, ipsdienol, and amitinol through radio-HPLC analysis of pentane extracts of Porapak-trapped volatiles from (A) male and (B) female Ips paraconfusus Lanier feeding for 168 h in Pinus ponderosa and (C) male and (D) female Ips pini (Say) feeding for 168 h in Pinus jeffreyi (Seybold et al., 1995b). Demonstration of sex-specific de novo biosynthesis of frontalin through radio-HPLC analysis of pentane extracts of Porapak-trapped volatiles from (E) male and (F) female...
Jeffrey pine beetle, Dendroctonus jeffreyi Hopkins, which had been previously treated with juvenile hormone III (JH III, 2.2 pg/beetle in acetone) and then placed in an aeration tube for 25 to 30 h. Ips paraconfusus and I. pini were each injected with 0.2 pCi of sodium [1-14C]acetate prior to placement in cut pine logs and volatile collection, while D. jeffreyi were each injected with 3.8 (male) and 3.7 (female) pCi of sodium [1-14C]acetate 6.4 (male) and 10.7 (female) h after JH application. (G) The role of the mevalonate pathway in frontalin biosynthesis is supported by the incorporation of radiolabel from [2-14C]mevalonolactone into frontalin by male D. jeffreyi (2.2 pg JH 11 l/beetle in acetone, 10 h incubation and volatile collection, 1.1 pCi of [2 14C] mevalonolactone injected, 20 h volatile collection). Figures adapted from Seybold et al. (1995b) and Barkawi (2002). [Pg.169]

Barkawi L. S. (2002) Biochemical and molecular studies of aggregation pheromones of bark beetles in the genus Dendroctonus (Coleoptera Scolytidae), with special reference to the Jeffrey pine beetle, Dendroctonus jeffreyi Hopkins. PhD thesis. Univ. Nevada, Reno, 193 pp. [Pg.183]

Paine T. D., Millar J. G., Hanlon C. C. and Hwang J.-S. (1999) Identification of semiochemicals associated with Jeffrey pine beetle, Dendroctonus jeffreyi. J. Chem. Ecol. 25, 433 153. [Pg.195]

Renwick J. A. A. and Pitman G. B. (1979) An attractant isolated from female Jeffrey pine beetles, Dendroctonus jeffreyi. Environ. Entomol. 8, 40-41. [Pg.196]

The effect of JH III on HMG-R expression in I. paraconfusus, I. pini and D. jeffreyi was investigated by determining both a dose-response and time course by standard northern blotting. JH III, dissolved in acetone, was applied topically onto the ventral abdomens of unfed adult insects, while control insects were treated with an equivalent volume of acetone. Total or poly (A)+ RNA was then isolated from intact tissues pooled from up to ten individuals for the Ips studies (Tittiger et al., 1999 Tillman et al., in preparation). For the D. jeffreyi studies, preliminary work localized JH Ill-induced HMG-R expression to the metathorax/... [Pg.210]


See other pages where Jeffreyi is mentioned: [Pg.125]    [Pg.162]    [Pg.121]    [Pg.229]    [Pg.22]    [Pg.42]    [Pg.156]    [Pg.156]    [Pg.162]    [Pg.163]    [Pg.169]    [Pg.169]    [Pg.170]    [Pg.174]    [Pg.174]    [Pg.175]    [Pg.202]    [Pg.204]    [Pg.204]    [Pg.205]    [Pg.205]    [Pg.206]    [Pg.206]    [Pg.207]    [Pg.207]    [Pg.207]    [Pg.207]    [Pg.208]    [Pg.208]    [Pg.209]    [Pg.210]    [Pg.212]    [Pg.212]    [Pg.212]   


SEARCH



Dendroctonus jeffreyi

Jeffrey pine beetle jeffreyi

Jeffreyi pheromone biosynthesis

Jeffreyi pheromone components

Pinus jeffreyi

© 2024 chempedia.info