Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Issues liquids

Various hollow-cone simplex atomizers (Fig. 2.1) have been developed for combustion applications, differing from each other mainly in the way that swirl is imparted to the issuing liquid jet. In these atomizers, swirl chambers may have conical slots, helical slots (or vanes), or tangential slots (or drilled holes). Using thin, removable swirl plates to cut or stamp the swirl chamber entry ports leads to economies of the atomization systems if spray uniformity is not a primary concern. Large simplex atomizers have found applications in utility boilers and industrial furnaces. Oil flow rates can be as high as 67 kg/min. [Pg.30]

Kelly, S.M. (1995) Anisotropic Networks. Journal of Materials Chemistry, 5,2047-2061. Litster, J.D. (ed) (1982) Special Issue Liquid Crystals. Physics Today, 35, May. [Pg.294]

Traditional analytical methods to analyze amphetamines include gas chromatography-mass spectrometry where derivatization is often required to fecilitate analysis. Besides sample preparation issues, it has been demonstrated that injection port chemistry in the GC can lead to misleading results with some members of the amphetamine class. To circumvent these issues, liquid chromatography-mass spectrometry (LC-MS/ MS) offers the promise of a simpler sample preparation procedure and fewer analytical concerns. This chapter describes an LC-MS/MS technique for the analysis of 14 ATSs in blood, serum/plasma, and urine. The method is quantitative and has reporting limits in the low ng/mL range. Electrospray ionization is used in the positive ion mode. Two transitions for each compound are monitored along with ion ratios. [Pg.105]

In the context of the structural perturbations at fluid-solid interfaces, it is interesting to investigate the viscosity of thin liquid films. Eaily work on thin-film viscosity by Deijaguin and co-workers used a blow off technique to cause a liquid film to thin. This work showed elevated viscosities for some materials [98] and thin film viscosities lower than the bulk for others [99, 100]. Some controversial issues were raised particularly regarding surface roughness and contact angles in the experiments [101-103]. Entirely different types of data on clays caused Low [104] to conclude that the viscosity of interlayer water in clays is greater than that of bulk water. [Pg.246]

The reports were that water condensed from the vapor phase into 10-100-/im quartz or pyrex capillaries had physical properties distinctly different from those of bulk liquid water. Confirmations came from a variety of laboratories around the world (see the August 1971 issue of Journal of Colloid Interface Science), and it was proposed that a new phase of water had been found many called this water polywater rather than the original Deijaguin term, anomalous water. There were confirming theoretical calculations (see Refs. 121, 122) Eventually, however, it was determined that the micro-amoimts of water that could be isolated from small capillaries was always contaminated by salts and other impurities leached from the walls. The nonexistence of anomalous or poly water as a new, pure phase of water was acknowledged in 1974 by Deijaguin and co-workers [123]. There is a mass of fascinating anecdotal history omitted here for lack of space but told very well by Frank [124]. [Pg.248]

Of course, condensed phases also exliibit interesting physical properties such as electronic, magnetic, and mechanical phenomena that are not observed in the gas or liquid phase. Conductivity issues are generally not studied in isolated molecular species, but are actively examined in solids. Recent work in solids has focused on dramatic conductivity changes in superconducting solids. Superconducting solids have resistivities that are identically zero below some transition temperature [1, 9, 10]. These systems caimot be characterized by interactions over a few atomic species. Rather, the phenomenon involves a collective mode characterized by a phase representative of the entire solid. [Pg.87]

Setting up liquid simulations is more complex than molecular calculations. This is because the issues mentioned in this chapter must be addressed. At least the first time, researchers should plan on devoting a significant amount of work to a liquid simulation project. [Pg.305]

These factors make it necessary to reduce the amount of solvent vapor entering the flame to as low a level as possible and to make any droplets or particulates entering the flame as small and of as uniform a droplet size as possible. Desolvation chambers are designed to optimize these factors so as to maintain a near-constant efficiency of ionization and to flatten out fluctuations in droplet size from the nebulizer. Droplets of less than 10 pm in diameter are preferred. For flow rates of less than about 10 pl/min issuing from micro- or nanobore liquid chromatography columns, a desolvation chamber is unlikely to be needed. [Pg.107]

Three common types of nozzle are shown diagrammatically. Types A and K are similar, with sharp cutoffs on the ends of the outer and inner capillaries to maximize shear forces on the liquid issuing from the end of the inner tube. In types K and C, the inner capillary does not extend to the end of the outer tube, and there is a greater production of aerosol per unit time. These concentric-tube nebulizers operate at argon gas flows of about 1 1/min. [Pg.143]

The first form of aerosol modifier is a spray chamber. It is designed to produce turbulent flow in the argon carrier gas and to give time for the larger droplets to coalesce by collision. The result of coalescence, gravity, and turbulence is to deposit the larger droplets onto the walls of the spray chamber, from where the deposited liquid drains away. Since this liquid is all analyte solution, clearly some sample is wasted. Thus when sensitivity of analysis is an issue, it may be necessary to recycle this drained-off liquid back through the nebulizer. [Pg.152]

A sample to be examined by electrospray is passed as a solution in a solvent (made up separately or issuing from a liquid chromatographic column) through a capillary tube held at high electrical potential, so the solution emerges as a spray or mist of small droplets (i.e., it is nebulized). As the droplets evaporate, residual sample ions are extracted into a mass spectrometer for analysis. [Pg.390]

A stream of liquid issuing from a narrow tube can be broken up into a spray of small droplets by injecting helium gas just before the end of the tube. This nebulization is analogous to the action of an aerosol spray-can nozzle. [Pg.393]

For fast-setthug slurries, ensuring conveyance is usually the key design issue while pressure drop is somewhat less important. For nonsettling slurries conveyance is not an issue, because the particles do not separate from the liquid. Here, viscous and rheological behavior, which control pressure drop, take on critical importance. [Pg.657]

In the case of preferred stock, the par value has more meaning than with common stock, since it is the amount due preferred stockholders if the company goes into liquidation, provided that this is a condition of issue. [Pg.842]

B31.4 Liquid Petroleum Transportation Piping Systems For liquid crude or reBued products in cross-country pipe hues Latest issue 1979... [Pg.946]

Petroleum pipe hues before 1969 were built to ASA (now ANSI) Standard B31.4 for liquids and Standard B31.8 for gas. These standards were seldom mandatoiy because few states adopted them. The U.S. Department of Transportation (DOT), which now has responsi-bihty for pipe-line regulation, issued Title 49, Part 192—Transportation of Natural Gas and Other Gas by Pipeline Minimum Safety Standards, and Part 195—Transportation of Liquids by Pipehne. These contain considerable material from B31.4 and B31.8. They allow generally higher stresses than the ASME Pressure Vessel Code would allow for steels of comparable strength. The enforcement of their regulations is presently left to the states and is therefore somewhat uncertain. [Pg.1020]

Temperature The level of the temperature measurement (4 K, 20 K, 77 K, or higher) is the first issue to be considered. The second issue is the range needed (e.g., a few degrees around 90 K or 1 to 400 K). If the temperature level is that of air separation or liquefact-ing of natural gas (LNG), then the favorite choice is the platinum resistance thermometer (PRT). Platinum, as with all pure metals, has an electrical resistance that goes to zero as the absolute temperature decreases to zero. Accordingly, the lower useful limit of platinum is about 20 K, or liquid hydrogen temperatures. Below 20 K, semiconductor thermometers (germanium-, carbon-, or silicon-based) are preferred. Semiconductors have just the opposite resistance-temperature dependence of metals—their resistance increases as the temperature is lowered, as fewer valence electrons can be promoted into the conduction band at lower temperatures. Thus, semiconductors are usually chosen for temperatures from about 1 to 20 K. [Pg.1136]


See other pages where Issues liquids is mentioned: [Pg.828]    [Pg.74]    [Pg.415]    [Pg.25]    [Pg.1627]    [Pg.1623]    [Pg.828]    [Pg.25]    [Pg.106]    [Pg.351]    [Pg.828]    [Pg.74]    [Pg.415]    [Pg.25]    [Pg.1627]    [Pg.1623]    [Pg.828]    [Pg.25]    [Pg.106]    [Pg.351]    [Pg.77]    [Pg.928]    [Pg.239]    [Pg.307]    [Pg.27]    [Pg.63]    [Pg.48]    [Pg.223]    [Pg.144]    [Pg.146]    [Pg.96]    [Pg.51]    [Pg.64]    [Pg.444]    [Pg.160]    [Pg.456]    [Pg.631]    [Pg.1136]    [Pg.1321]    [Pg.1438]    [Pg.1479]    [Pg.1590]    [Pg.2332]   
See also in sourсe #XX -- [ Pg.14 , Pg.142 ]




SEARCH



Ionic liquids economic issues

Ionic liquids future research issues

Liquid crystals future research issues

Liquid technological issues

© 2024 chempedia.info