Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thin-Film Viscosity

In the context of the structural perturbations at fluid-solid interfaces, it is interesting to investigate the viscosity of thin liquid films. Eaily work on thin-film viscosity by Deijaguin and co-workers used a blow off technique to cause a liquid film to thin. This work showed elevated viscosities for some materials [98] and thin film viscosities lower than the bulk for others [99, 100]. Some controversial issues were raised particularly regarding surface roughness and contact angles in the experiments [101-103]. Entirely different types of data on clays caused Low [104] to conclude that the viscosity of interlayer water in clays is greater than that of bulk water. [Pg.246]

The traditional, essentially phenomenological modeling of boundary lubrication should retain its value. It seems clear, however, that newer results such as those discussed here will lead to spectacular modification of explanations at the molecular level. Note, incidentally, that the tenor of recent results was anticipated in much earlier work using the blow-off method for estimating the viscosity of thin films [68]. [Pg.451]

If a linear mbber is used as a feedstock for the mass process (85), the mbber becomes insoluble in the mixture of monomers and SAN polymer which is formed in the reactors, and discrete mbber particles are formed. This is referred to as phase inversion since the continuous phase shifts from mbber to SAN. Grafting of some of the SAN onto the mbber particles occurs as in the emulsion process. Typically, the mass-produced mbber particles are larger (0.5 to 5 llm) than those of emulsion-based ABS (0.1 to 1 llm) and contain much larger internal occlusions of SAN polymer. The reaction recipe can include polymerization initiators, chain-transfer agents, and other additives. Diluents are sometimes used to reduce the viscosity of the monomer and polymer mixture to faciUtate processing at high conversion. The product from the reactor system is devolatilized to remove the unreacted monomers and is then pelletized. Equipment used for devolatilization includes single- and twin-screw extmders, and flash and thin film evaporators. Unreacted monomers are recovered for recycle to the reactors to improve the process yield. [Pg.204]

Continuous deaeration occurs when the viscose is warmed and pumped into thin films over cones in a large vacuum tank. The combination of the thinness of the Hquid film and the dismption caused by the boiling of volatile components allows the air to get out quickly. Loss of water and CS2 lower the gamma value and raise the cellulose concentration of the viscose slightly. Older systems use batch deaeration where the air bubbles have to rise through several feet of viscose before they are Hberated. [Pg.347]

The gate-roU size press is used for the appHcation of high soHds, high viscosity compositions to the surface of the sheet (92). The material to be appHed is transferred over a series of roUs, and a thin film from the appHcator roU is appHed to the sheet. [Pg.21]

Solution Deposition of Thin Films. Chemical methods of preparation may also be used for the fabrication of ceramic thin films (qv). MetaHo-organic precursors, notably metal alkoxides (see Alkoxides, metal) and metal carboxylates, are most frequently used for film preparation by sol-gel or metallo-organic decomposition (MOD) solution deposition processes (see Sol-GEL technology). These methods involve dissolution of the precursors in a mutual solvent control of solution characteristics such as viscosity and concentration, film deposition by spin-casting or dip-coating, and heat treatment to remove volatile organic species and induce crystaHhation of the as-deposited amorphous film into the desired stmcture. [Pg.346]

Both high bulk and surface shear viscosity delay film thinning and stretching deformations that precede bubble bursting. The development of ordered stmctures in the surface region can also have a stabilizing effect. Liquid crystalline phases in foam films enhance stabiUty (18). In water-surfactant-fatty alcohol systems the alcohol components may serve as a foam stabilizer or a foam breaker depending on concentration (18). [Pg.465]

Impreg na.tion Coa.ting. Impregnation coating is performed by saturation of the component with a low viscosity resia a thin film is coated on the component surface. This process is usually used with a cavity-filling or conformal coating process. [Pg.193]

Dukler Theory The preceding expressions for condensation are based on the classical Nusselt theoiy. It is generally known and conceded that the film coefficients for steam and organic vapors calculated by the Nusselt theory are conservatively low. Dukler [Chem. Eng. Prog., 55, 62 (1959)] developed equations for velocity and temperature distribution in thin films on vertical walls based on expressions of Deissler (NACA Tech. Notes 2129, 1950 2138, 1952 3145, 1959) for the eddy viscosity and thermal conductivity near the solid boundaiy. According to the Dukler theoiy, three fixed factors must be known to estabhsh the value of the average film coefficient the terminal Reynolds number, the Prandtl number of the condensed phase, and a dimensionless group defined as follows ... [Pg.566]

Organosols (Mix B, Table 12.5) are characterised by the presence of a volatile organic diluent whose function is solely to reduce the paste viscosity. After application it is necessary to remove the diluent before gelling the paste. Organosols are therefore restricted in use to processes in which the paste is spread into a thin film, such as in the production of leathercloth. Because of the extra processes involved, organosols have not been widely used, in Europe at least. [Pg.352]

The theory of seaweed formation does not only apply to solidification processes but in fact to the completely different phenomenon of a wettingdewetting transition. To be precise, this applies to the so-called partial wetting scenario, where a thin liquid film may coexist with a dry surface on the same substrate. These equations are equivalent to the one-sided model of diffusional growth with an effective diffusion coefficient which depends on the viscosity and on the thermodynamical properties of the thin film. [Pg.895]

The first part of Eq. (89), proportional to the inverse viscosity r] of the liquid film, describes a creeping motion of a thin film flow on the surface. In the (almost) dry area the contributions of both terms to the total flow and evaporation of material can basically be neglected. Inside the wet area we can, to lowest order, linearize h = hoo[ + u x,y)], where u is now a small deviation from the asymptotic equilibrium value for h p) in the liquid. Since Vh (p) = 0 the only surviving terms are linear in u and its spatial derivatives Vw and Au. Therefore, inside the wet area, the evolution equation for the variable part u of the height variable h becomes... [Pg.895]

Lubricants used in processing can be divided into inner and outer lubricants. The former is slightly soluble in the melted polymer, thus it lowers the melt viscosity of the polymer the latter forms a thin film between the surfaces of the melted polymer and the hot metal surface of the processing machine, thus it does not allow the polymer to stick to the surface of the machine. [Pg.140]

Boundary lubrication is perhaps best defined as the lubrication of surfaces by fluid films so thin that the friction coefficient is affected by both the type of lubricant and the nature of the surface, and is largely independent of viscosity. A fluid lubricant introduced between two surfaces may spread to a microscopically thin film that reduces the sliding friction between the surfaces. The peaks of the high spots may touch, but interlocking occurs only to a limited extent and frictional resistance will be relatively low. [Pg.844]

Plain slideways are preferred in the majority of applications. Only a thin film of lubricant is present, so its properties - especially its viscosity, adhesion and extreme-pressure characteristics - are of vital importance. If lubrication breaks down intermittently, a condition is created known as stick-slip , which affects surface finish, causes vibration and chatter and makes close limits difficult to hold. Special adhesive additives are incorporated into the lubricant to provide good bonding of the oil film to the sliding surfaces, which helps to overcome the problems of table and slideway lubrication. On long traverses, oil may be fed through grooves in the underside of the slideway. [Pg.866]

As a major branch of nanotribology. Thin Film Lubrication (TFL) has drawn great concerns. The lubricant him of TFL, which exists in ultra precision instruments or machines, usually ranges from a few to tens of nanometres thick under the condition of point or line contacts with heavy load, high temperature, low speed, and low viscosity lubricant. One of the problems of TFL study is to measure the him thickness quickly and accurately. The optical method for measuring the lubricant him thickness has been widely used for many years. Goher and Cameron [3] successfully used the technique of interferometry to measure elastohydrody-namic lubrication him in the range from 100 nm to 1 /rm in 1967. Now the optical interference method and Frustrated Total Reflection (FTR) technique can measure the him thickness of nm order. [Pg.7]

Thin film lubrication (TFL), as the lubrication regime between elastohydrodynamic lubrication (EHL) and boundary lubrication, has been proposed from 1996 [3,4], The lubrication phenomena in such a regime are different from those in elastohydrodynamic lubrication (EHL) in which the film thickness is strongly related to the speed, viscosity of lubricant, etc., and also are different from that in boundary lubrication in which the film thickness is mainly determined by molecular dimension and characteristics of the lubricant molecules. [Pg.37]


See other pages where Thin-Film Viscosity is mentioned: [Pg.14]    [Pg.14]    [Pg.246]    [Pg.362]    [Pg.519]    [Pg.541]    [Pg.328]    [Pg.429]    [Pg.451]    [Pg.248]    [Pg.169]    [Pg.203]    [Pg.260]    [Pg.259]    [Pg.259]    [Pg.317]    [Pg.319]    [Pg.337]    [Pg.342]    [Pg.358]    [Pg.1418]    [Pg.345]    [Pg.679]    [Pg.35]    [Pg.2]    [Pg.38]    [Pg.60]    [Pg.63]    [Pg.63]    [Pg.70]    [Pg.70]   
See also in sourсe #XX -- [ Pg.246 , Pg.451 ]




SEARCH



Film viscosity

Thin-film model viscosity

© 2024 chempedia.info