Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Isotope ratio measurements accuracy

Gases and vapors of volatile liquids can be introduced directly into a plasma flame for elemental analysis or for isotope ratio measurements. Some elements can be examined by first converting them chemically into volatile forms, as with the formation of hydrides of arsenic and tellurium. It is important that not too much analyte pass into the flame, as the extra material introduced into the plasma can cause it to become unstable or even to go out altogether, thereby compromising accuracy or continuity of measurement. [Pg.102]

From a series of isotope ratio measurements, the precision of measurement can be assessed statistically, as shown here. Precision reveals the reproducibility of the measurement method, but it does not provide information on the accuracy of the measurement (see also Figures 48.8 and 48.9). [Pg.362]

Accurate, precise isotope ratio measurements are important in a wide variety of applications, including dating, examination of environmental samples, and studies on drug metabolism. The degree of accuracy and precision required necessitates the use of special isotope mass spectrometers, which mostly use thermal ionization or inductively coupled plasma ionization, often together with multiple ion collectors. [Pg.369]

Accurate, precise isotope ratio measurements are used in a variety of applications including dating of artifacts or rocks, studies on drug metabolism, and investigations of environmental issues. Special mass spectrometers are needed for such accuracy and precision. [Pg.426]

TI is a very precise and accurate method in stable isotope ratio measurements and quantification of inorganic elements, for example, by isotope dilution mass spectrometry [8]. Because TI is a continuous ion source, it could be coupled to any analyzer that is suitable for such sources. However, because the strength of TI lies in the quantitative precision and accuracy, sector analyzers are preferred to ensure maximum quality. [Pg.19]

The best precision is obtained for isotope ratios near unity (unless the element to be determined is near the detection limit, when the ratio of spike isotope to natural isotope should be between 3 and 10) so that noise contributes only to the uncertainty of natural isotope measurement. Errors also become large when the isotope ratio in the spiked sample approaches the ratio of the isotopes in the spike (overspiking), or the ratio of the isotopes in the sample (underspiking), the two situations being illustrated in Fig. 5.11. The accuracy and precision of the isotope dilution analysis ultimately depend on the accuracy and precision of the isotope ratio measurement, so all the precautions that apply to isotope ratio analysis also apply in this case. [Pg.134]

Q. What are the factors which most affect the accuracy and precision of isotope ratio measurements ... [Pg.135]

In addition, one of the main features of mass spectrometry is, and this is the major advantage in comparison to other atomic and molecular non-mass spectrometric techniques, that it offers the possibility of determining isotope ratios and abundances of isotopes with high precision and accuracy in all types of samples (in solid, liquid and gaseous materials as well). Isotope ratio measurements have applied increasingly for stable isotopes in nature, especially for investigating... [Pg.5]

An excellent possibility for quantifying analytical data in inorganic mass spectrometry is isotope dilution analysis (IDA) based on more precise isotope ratio measurements. IDA uses highly enriched isotope spikes of analytes of known concentration for calibration and is the method of choice if a high accuracy for element concentrations is required. The principles and applications of this method will be discussed below. [Pg.194]

Precise and accurate isotope analyses by mass spectrometry have attained growing importance in the last few years due to instrumental improvements with respect to sensitivity, detection limits, precision and accuracy.1 As mentioned before, because the isotope abundances of several elements are not constant and vary as a result of nuclear, biological, chemical, geochemical and physical processes, isotope ratio measurements are required for different research and application fields. Isotope ratio measurements are therefore necessary for elements with two or more isotopes for inves-... [Pg.225]

For many decades, TIMS was the isotope analytical technique of choice, but due to instrumental developments in ICP-MS, especially with multiple ion collectors (MC-ICP-SFMS), and the advantages of ICP-MS in comparison to TIMS (e.g., higher element sensitivities, faster isotope ratio measurements, comparable precision and accuracy, practically no restriction on the ionization potential of chemical elements, time independent mass fractionation and the possibility of additional multi-element analysis at trace and ultratrace level and fewer, less time-consuming sample preparation steps75), TIMS will be replaced in future by powerful ICP-MS to an ever greater extent. [Pg.228]

Of all the different mass spectrometric techniques for isotope analysis (such as ICP-MS, LA-ICP-MS, TIMS, GDMS, AMS, SIMS, RIMS and isotope ratio mass spectrometry of gases), the greatest proportion of pubhshed papers today concern ICP-MS with single and multiple ion collection.19 Due to its benefits, ICP-MS has now become a widely accepted method for isotope analysis and allows isotope ratios to be measured in a short time with good accuracy and precision.9,19,75 78 As discussed above, as a powerful and universal tool, ICP-MS has opened up new applications for isotope ratio measurements of elements with a high first ionization potential, which are difficult to analyze with TIMS (such as Mo, Hf, Fe). Of all the heavy metals studied, uranium was favoured by ICP-MS and LA-ICP-MS. [Pg.228]

Limits for Precision and Accuracy of Isotope Ratio Measurements and How to Solve the Problems... [Pg.228]

An analytical procedure has been proposed for precise uranium isotope ratio measurements in a thin uranium layer on a biological surface by LA-ICP-MS using a cooled laser ablation chamber.125 One drop of uranium isotope standard reference materials NIST, 350, NIST 930, of our isotopic laboratory standard CCLU 500 (20p.l, U concentration 200 ng 1) and of uranium with natural isotopic pattern were deposited on the leaf surface and analyzed by LA-ICP-MS at well defined laser crater diameters of 10, 15, 25 and 50 p.m. A precision for measurements of isotope ratios in the range of 2.1-1.0% for 235U/238U in selected isotope standards was observed whereby the precision and the accuracy of isotope ratios compared to the non-cooled laser ablation chamber was improved.125... [Pg.234]

In order to overcome, or at least minimise, such drawbacks we can resort to the use of chemometric techniques (which will be presented in the following chapters of this book), such as multivariate experimental design and optimisation and multivariate regression methods, that offer great possibilities for simplifying the sometimes complex calibrations, enhancing the precision and accuracy of isotope ratio measurements and/or reducing problems due to spectral overlaps. [Pg.21]

Accuracy of isotope ratio measurement is critically dependent on having the instrument properly calibrated and following correct analytical protocol. Mass bias is present to some degree in all thermal ionization analyses, and a lot of ingenuity has been invested in mitigating its effect. Mass bias arises from a... [Pg.16]

Since the introduction of the first commercial instrument in 1983, inductively coupled plasma mass spectrometry (ICP-MS) has become widely accepted as a powerful technique for elemental analysis. Two excellent books on ICP-MS have been published [1,2]. ICP-MS provides rapid, multielement analysis with detection limits at single parts part trillion or below for about 40 to 60 elements in solution and a dynamic range of 104 to 108. These are the main reasons most ICP-MS instruments have been purchased. Two additional, unique capabilities of ICP-MS have also contributed to its commercial success elemental isotope ratio measurements and convenient semiquantitative analysis. The relative sensitivities from element to element are predictable enough that semiquantitative analysis (with accuracy within a factor of 2 to 5) for up to 80 elements can be obtained using a single calibration solution containing a few elements and a blank solution. [Pg.67]

Matrix effects (termed instrumental mass bias) also present problems in isotope ratio analysis as the measured isotope ratio is almost always light isotope enriched relative to the accepted ratio, and the degree of this enrichment depends on the matrix composition. Although mass bias variations between different mineral compositions are relatively minor for most elements (a few percentage points at most), the high accuracy required in isotope analysis (often 1% or better) demands careful calibration. For isotope ratio measurements in essentially isochemical... [Pg.422]


See other pages where Isotope ratio measurements accuracy is mentioned: [Pg.199]    [Pg.65]    [Pg.118]    [Pg.397]    [Pg.152]    [Pg.218]    [Pg.226]    [Pg.229]    [Pg.231]    [Pg.231]    [Pg.233]    [Pg.234]    [Pg.237]    [Pg.239]    [Pg.241]    [Pg.332]    [Pg.367]    [Pg.398]    [Pg.412]    [Pg.446]    [Pg.29]    [Pg.29]    [Pg.30]    [Pg.40]    [Pg.41]    [Pg.42]    [Pg.868]    [Pg.114]    [Pg.123]   
See also in sourсe #XX -- [ Pg.29 , Pg.30 ]

See also in sourсe #XX -- [ Pg.29 , Pg.30 ]




SEARCH



Accuracy in isotope ratio measurements

Accuracy, of isotope ratio measurements

Isotope measurement

Isotope ratio measurements

Isotope ratio measurements accuracy limits

Isotope ratios

Isotopes, measuring

Isotopic measurement

© 2024 chempedia.info